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Abstract— One milestone for autonomous mobile robotics is
to endow robots with the capability to compute the plans and
motor commands necessary to reach a defined goal position. For
indoor or car-like robots moving on flat terrain, this problem
is well mastered and open-source software can be deployed to
such robots. However, for many applications such as search and
rescue, ground robots must handle three-dimensional terrain.
In this article, we present a system that is able to plan
and execute a path in a complex environment starting from
noisy sensor input. In order to cope with the complexity of
a high-dimensional configuration space, we separate position
and configuration planning. We demonstrate our system on a
search and rescue robot with flippers by climbing up and down
a difficult curved staircase.

I. INTRODUCTION

Path planning and execution are important milestones
for mobile robotics towards autonomy. During missions
involving robots, autonomous behaviors can free operators
for other demanding tasks than just controlling the robots.
Moreover, in dangerous areas for search and rescue, like
in Fukushima [1], having a possibility of onboard path
planning would allow for recovery procedure like homing
in case of loss of communication.

Fig. 1 shows the search and rescue robot we use in this
paper. It has two tracks linked by a differential and four
independent flippers to help moving in difficult terrain and
climb slopes up to 45◦. The flippers are controlled in position
but with a torque limitation which induces a behavior similar
to springs with constant force (independent of the angle). In
total, the configuration space of the robot has ten dimensions:
three for the position, three for the orientation and one for
each of the four flippers. As exteroceptive sensors, this work
uses a front-mounted rolling laser scanner that can take full
three-dimensional (3D) scans.

Metric path planning in 2D for indoor robots can be
seen as a mostly solved problem, for which open-source
software solutions are available [2], [3]. Similar algorithms
also apply in outdoor scenarios like autonomous cars, but
in that case, the problem mostly lies in perception and
the embedding of driving rules [4]. Once the free space
is identified, planning in those cases can be performed by
generic graph path planners such as Dijkstra [5], A* [6]
and D*-Lite [7]. Adapting to the kinematics constraints of
specific robots can be done with state lattices [8] or via the
specification of the cost function between search nodes [9].
In a 2D search space, there are even interpolation solutions
to overcome the typical angular defects of grid-based search
methods [10], [11].
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Fig. 1. NiftiBot during autonomous climbing of a curved staircase.

On the other hand, 3D path planning for aerial [12],
[13], [14] or underwater [15] robots is also well studied,
leading to stochastic approaches that cope with the in-
creased dimensionality like probabilistic roadmaps [16] and
rapidly exploring random trees [17], [18]. Those stochastic
approaches allow for the exploration of high-dimensional
search space which is unfeasible with deterministic methods.
However, this is at the cost of the loss optimality.

Search and rescue robots evolve on paths which lie on a
2D manifold embedded in a three-dimensional space. Adding
elevation to 2D representation (also known as 2.5D) as exem-
plified for space rovers [19] is insufficient in urban search
and rescue scenarios. This is due to the layered structure
of such environments with several floors and staircases.
Therefore, there is an additional distinction between free
configurations (i.e. not in collision with an obstacle) and
feasible configurations that is not present for autonomous
cars nor aerial vehicles.

Moreover, this distinction prevents the efficient use of
stochastic planners as these assume it is relatively easy to
detect whether a new sampled configuration is reachable
from other configuration samples: the direct path between
two sides of a gap might be free of obstacle, yet the robot
might fall in the gap.

Some surface-inspection robots face a similar problem.
Stumm et al. [20] consider a small robot with magnetic
wheels to inspect steel pipes from the inside. Their robot
is constrained to move only on the surface but this surface
is a complex 3D object that cannot be accurately described
with elevation maps. They propose to use tensor voting to
reconstruct a dense representation of a 3D environment based
on point clouds. Then, they use the A* algorithm to look for
a path. For execution, they unravel the 3D path by stitching
local 2D patches and applying a 2D path-following method
in the neighborhood of control points in the path. This
approach cannot be directly applied to our case as our robot
does not magnetically stick to the surface in any orientation.



Furthermore, our robot has more degrees of freedom as
the flippers also need to be controlled. Finally, they used
external localization and processing and their approach was
not applied online.

In the continuity of this approach, we propose a system
to solve path planning and execution for ground robots
evolving in 3D. We strongly link perception and planning to
avoid processing useless information (Sec. II). We leverage
the structure of the search space to separate position and
configuration planning (Sec. III and Sec. IV). We use a
fast replanning algorithm in order to compute a new plan
adapted to the current state at each step of the execution
(Sec. V). We evaluate this system on our robot in two
different environments (Sec. VI). We conclude this paper
with a discussion of the limits and choices of our system
(Sec. VII).

II. PERCEPTION

A. Overall process

A fundamental problem common to all autonomous sys-
tems is the construction of an adequate representation of
the environment based on the sensor data. To date, there
is no generic representation as the constraint of adequacy is
specific to each problem.

In our case, the sensor data are mainly 3D laser point
clouds, assumed to be registered with the Iterative Closest
Point algorithm [21]. This process also provides localization
of the robot. What we need is a representation of the
environment that can allow us to decide: 1. whether any
specific pose is feasible (i.e.: free from obstacle, with enough
support, and within roll and pitch angle constraints), and 2.
whether we can move between any two neighboring poses.
Therefore, we need to build a dense representation from
sparse data with varying density. Moreover, we need onboard
processing, which excludes computationally-intensive offline
methods such as re-meshing of the environment [22], [23].

Stumm et al. propose tensor voting [20] as a way to
get dense geometric information. Basically, tensor voting
extracts geometrical primitives (plane, line, and sphere for
example) and the associated saliency via the voting of points.
This process is often implemented in two passes: first the
points vote between themselves assuming they are spheres
to get a first idea of the local structure (sparse voting), and
then the extracted tensors vote according to their shape and
saliency to produce a dense grid map for each tensor. Thus
the result is a 3D grid, in which each cell holds the saliency
and parameters of each tensor (e.g.: normal for planes, or
principal direction for lines). For a complete description of
the tensor voting process, please refer to [24].

In this work, we use a similar tensor voting process. Its
main high-level result is the knowledge, for each cell, of
whether there is a local plane and, if so, its orientation.
One key parameter of tensor voting is the kernel size, which
governs the scale at which the features are considered. For
our application, we define the size such that the surface ori-
entation computed by the tensor voting process corresponds
to the orientation the robot would have on this surface.

Full point cloud Random filter

Distance filter Comparison

Fig. 2. Comparison of distance and random filters. Top-left: side view of the
full point cloud colored by elevation (488,918 points); top-right: point cloud
randomly subsampled to 36,014 points; bottom-left: point cloud filtered as
exposed (36,014 points); bottom-right: comparison, in magenta the distance
filter and in green the random filter.

B. Distance filter

The complexity of sparse voting is in O(N2), where N is
the number of points in the point cloud, as all points should
vote at each other. This can be reduced with the choice of
a kernel with bounded support to O(N × k) where k is the
maximum number of points in the support of the kernel,
which depends on the maximum density of the point cloud.
In a previous work [25], we proposed a GPU implementation
in order to accelerate the calculation. However, the target
robot is not equipped with GPU hardware in this study, hence
the necessity to reduce the number of points. A common
issue with point cloud maps is that the density of points can
be arbitrarily high in some regions while low in other. This
prevents random subsampling techniques to be efficient as if
we do not want to lose too much information in low-density
areas, we cannot subsample too aggressively.

To constrain the complexity of sparse voting, we pro-
pose to reduce both the number of points and the max-
imum density by filtering points that are too close. The
algorithm is as follows where d is the closest acceptable
distance:

for all p ∈ point cloud do
for all n ∈ point cloud such that ‖n− p‖ <= d do

delete n
end for

end for
This can be implemented efficiently with a fast kd-tree–

based nearest-neighbor search [26], by marking points to be
deleted instead of deleting them directly as this would require
modifying the kd-tree.This algorithm does not generate an
optimal representation minimizing the number of points.
Nevertheless, it is a reasonable trade-off between time and
memory complexity for subsequent processing.

Fig. 2 shows a comparison between the distance filter
and random subsampling in a staircase with two explored
floors. As expected, the random subsampling loses points in
low-density areas whereas the distance filter keeps a more
balanced representation.



TABLE I
USEFULNESS OF LAZY DENSE VOTING SCHEME.

number of cells average per cell
Environment full lazy # of request computation
Stairs 5,509,350 131,586 1,805 0.474 ms
Office 1,140,700 38,070 1,016 0.577 ms

C. Lazy dense voting

The complexity of dense voting is in O(N × G) where
G is the number of cells in the dense grids. G is cubic
as a function of the inverse of the cell size, which can be
prohibitive for even modest environments: a quarter billion
5 cm cells in a 100× 20× 16m building.

However, most of those cells are empty and, contrary to
flying robots, even more are irrelevant for a ground vehicle
(ceiling, hanging features, or higher walls...). Therefore, we
propose to do dense voting only where it is needed. This can
only be determined during the path-planning phase and we
implement it via memoization (in a hash table) of on-demand
dense voting for individual cells.

Tab. I compares the full number of cells for various
environments (col. 2) with the number of cells for which
the computation of dense voting was needed (col. 3). As a
mean of comparison the bounding box of the robot is around
385 cells. This shows that the lazy scheme providing on-
demand dense tensor voting brings a significant advantage
as it reduces the number of computations by an order
of magnitude. Furthermore, as we see in the table, the
average number of request per cell as well as the average
computation of dense voting show that the latter is still a
costly process and memoization is especially advantageous
to avoid computing many times the same values.

III. PATH PLANNING

A. Dimensionality reduction

As explained in the introduction, in order to reduce the
complexity of the planning, we do not plan in the full
10 degrees-of-freedom configuration space at once, but we
separate the position, the orientation and the angles of the
flippers. This is justified by the following observations:
• the attitude (roll and pitch) of the robot depends on the

position and the support surface,
• the heading of the robot depends on the change in

position as the robot is not holonomic,
• the angles of the flippers can be determined by the

sequence of planned positions.
We can then plan in only three dimensions but we need

to ensure that there is always a feasible orientation and
configuration of the flippers such that the path is executable.
This is done in the specification of the connectivity of
the graph (see III-B). Moreover, we need to specify cost
functions in order to express the different difficulty and
length of nodes and transitions (see III-C).

For the actual path planning, we use D*-Lite [7]. It is a
generic least-cost planning on graphs that, contrary to A*
[6], can be used for fast replanning in case of a change in
costs or the motion of the robot.

B. Connectivity

2D path planning on a graph is usually done without
explicit reference to obstacles by not introducing occupied
regions into the graph. In the same spirit, we look for
feasible (not only free from obstacle) paths by restraining
the connectivity to feasible cells. Thus, we consider a base
connectivity of 26 neighbors (cardinal directions plus all the
diagonals in 3D) and we check, at the expansion of a cell,
which of those 26 neighbors are feasible from this cell.

Severable criteria define a feasible neighbor from a cell:
• the robot is not in collision,
• there is a surface to support the robot,
• the surface is oriented so that the robot does not topple.
The not-in-collision criterion is checked by counting the

number of points in the bounding box of the robot at the
neighbor position, oriented as the robot would be, based on
the surface normal and its direction of origin. The support
criterion is checked by ensuring a minimum saliency of the
support plane, computed by the tensor voting process. The
orientation criterion is checked with the normal of the surface
computed again by the tensor voting process.

C. Cost functions

When the cells are pushed into the open list, the cost of
the path from the start of the search to a certain cell c is
computed based on the cost of its neighbors as follows:

g(c) = min
n∈N
{g(n) + cost(n, c)}

where g(.) is the total cost, N the list of neighbors of c and
cost(a, b) is the cost of the transition from cell a to b.

For our application, we define the following cost elements:
• saliency: neighbors with higher saliency are preferred,
• orientation: neighbors with lower slopes are preferred,
• distance: closer neighbors are preferred,
• heading: neighbors for which the direction of the robot

will follow the greatest slope are preferred.
These cost elements are straightforward except for the last

one, which is motivated by the design of the robot. Indeed,
not only do the flippers allow for crossing gaps by increasing
the support polygon, but they also allow the robot to be stable
on a greater slope, provided that it is in its motion direction.
This is reflected by greater pitch range than roll range. In
practice, our robot can climb stairs but would topple over if
we tried to move in diagonal. This is common to most robots
equipped with flippers, as the support polygon becomes an
elongated rectangle.

In order to get the weights between those costs elements,
we ran parameter optimization based on the length and
curvature of the path. This places a relatively high weight
on the distance cost while the other cost elements contribute
to have a smoother path.

IV. CONFIGURATION PLANNING

The path generated in the preceding section needs to be
completed with orientation information and flipper config-
uration. Orientation can be easily recovered from the path



and the geometric representation as we constrain the roll
and pitch angles of the robot by the normal vector of the
surface at the location of the robot, and the heading by the
path direction.

It would be feasible to use the geometric representation to
define the angles of the flippers, so that they lie as much as
possible on the surface. This idea stems from one important
role of the flippers which is to increase the stability of the
robot. However, another role of the flippers is to help the
transitions between surfaces of different orientations. For
example, when the robot needs to climb a positive obstacle,
the front flippers should stay at a fix angle, rather than fold
progressively as the robot approaches the step. Similarly,
when the robot needs to overcome a negative obstacle, the
back flippers can ease the tipping-over by pushing behind,
rather than just resting on the surface.

With these observations, we grouped the configurations
of the flippers into four posturesaccording to four main
situations (see Fig. 3):
• driving: the flippers are folded to reduce the footprint

and free the field of view of the sensors; used for easy
navigation.

• flat: the flippers are extended to increase the support
surface and traction; used for slopes.

• approach: the front flippers are raised to handle a step
while the back flippers are extended to prevent toppling
backwards; used to overcome positive obstacles.

• tip-over: both front and back flippers are set down-
wards, the back for pushing and the front for landing;
used to overcome negative obstacles.

10°

flat

tip-over approach

driving

Fig. 3. Flipper configurations used to pass negative and positive obstacles.

A flipper posture is associated with each position of the
path planned above. This is done in two passes over the path:
first the driving and flat postures are associated to the
position based on their static properties: flat above a given
slope and driving otherwise. Then, the transition postures
are set in a second pass according to the change of inclination
of the local surface geometry, as computed by tensor voting.
approach is used for concave edges and tip-over for
convex edges.

V. PATH EXECUTION

Path execution is responsible for generating the control
input for the robot in order to reach the goal. There are two

Fig. 4. Overview of the system.

main approaches: directly computing the best control input
at each time step, or following a predefined trajectory. The
latter is needed when the trajectory is imposed and not just
the goal, but it is also often simpler than replanning.

In our case, we use the first approach, made possible by the
ability of D*-Lite to do fast replanning both when the costs
have changed but also when the starting position (the robot
location) has moved. If the robot mostly follows the planned
path, the re-planning step is instantaneous as the intermediary
nodes have already been expanded. In the case of a deviation
of the robot from the plan, the algorithm usually needs to
expand a few nodes close to the original path in order to
adapt it to the current state. This can necessitate collision
checking and dense voting but it is usually relatively fast.

The path, being generated from a grid with neighbor
and diagonal connectivity, presents a typical jagged pattern
as the direction changes cannot be less than π/4. Those
sharp changes in direction are not ideal to execute for
mobile robots, especially on difficult grounds like stairs.
However, cutting corners need to be avoided as the path
might already be at the limit below which the robot risks
collision. Therefore, we compute the control input aiming at
the farthest point in the path such that the robot does not stray
away more than a given distance boundary. As for the flipper
commands, they are generated based on the configuration
determined as explained in Sec. IV.

Fig. 4 shows an overall system diagram. Sensor data (laser,
odometry and inertial measurement unit) are used to provide
online localization of the robot based on the iterative closest
point algorithm. This also allows to accumulate the laser
scans into a point cloud map. This map is fed to the planner
as input to the tensor voting process. The actual path planner
queries the tensor map according to its expansion. Once a
path is generated, it is decorated with orientation and flipper
posture information. Control inputs are then computed for
the robot controller. This loop comprising path-planning,
path decoration, and command computation runs at a fixed
frequency (5 Hz). This loop ends when the robot is close
enough to the goal.



Fig. 5. Top view of the office tests. The robot is on the left and the marker
indicating the goal on the right. In green is shown the path planned and in
red the path travelled by the robot after 10 times. The point cloud is colored
by elevation from orange for the ground to green and blue for tables and
ceiling.

TABLE II
PLANNING TIME DURING OFFICE TESTS (TESTS 7-9 OMITTED)

Test 1 2 3 4 5 6 10
Initial planning (s) 29.63 0.34 0.57 0.28 0.46 0.37 1.34

Mean replanning (ms) 26.0 13.9 11.7 4.1 6.1 5.0 0.9
Total replanning (s) 6.71 5.01 3.27 1.07 1.56 1.35 0.25

VI. EXPERIMENTS

All experiments start with driving the robot around in
the environment to populate the map. Then the goal is set
using an interactive marker in the 3D representation [27].
The goal is validated and altered by the path-planner so that
it is obstacle free, it lies on a support surface with enough
saliency, and the orientation is compatible with the normal
vector of the plane. This prevents setting goals that the robot
could not reach as they would be too close to obstacles, or
even in the air.

A. Flat terrain

We tested our system in several conditions. First, as a
regression test compared to 2D path planners, we validated
our planner in flat environments. These experiments also
helped to assess the general performance of the system. The
environment is an office with desks, chairs and tables. We
set the goal alternatively from one end to the other.

Fig. 5 shows a top view of those experiments. The path
computed by the planner, in green, presents the typical
jagged pattern due to the grid discretization. However, the
path execution is able to produce smooth trajectories, in red.

Tab. II shows the time performance of the planner on
a standard laptop (core i7-2640M). This tables shows that
after the very first planning, the time to compute subsequent
paths is in the order of one second. This is because most of
the required dense tensor voting operations are done during
the first path planning in this environment (test 1, initial
planning: ≈30 s). Similarly, the mean replanning time is well
below the 200 ms control loop duration which validates our
approach to do fast replanning at each time step.

B. Turning staircase

The advantage of our approach with respect to 2D or 2.5D
path planning is to handle complex full 3D environments in

the exact same way as a flat environment such as an office.
By definition, 2D techniques are not able to climb stairs
as these cannot be distinguished from walls whereas 2.5D
representations are not able to properly handle multilevel
environments like a building with several floors or even a
complete staircase. With our approach, the only difference
with respect to a 2D environment is the active need for
control of the positions of the flippers. Fig. 1 shows the
configuration of the flippers at different points in the trajec-
tory: 1. rolling on the platform, 2. getting on the staircase,
3. during the actual climb, 4. tipping over, 5. rolling on the
landing.

Fig. 6. Climbing down the stairs. Top row: side view, bottom row: top
view. The path planned initially is shown in green. The path travelled by
the robot is shown in red.

Fig. 6 presents an example of a robot trajectory in a
staircase. The robot is able to successfully complete the path.
This staircase is particularly challenging because, as it turns,
the robot cannot simply be set in the correct orientation to
climb down but must really correctly adapt its orientation.

The robot took 387 s and 260 s to climb up and down
respectively. This difference is mostly accounted for the
slippage, as the velocity commands in both cases are both
set to 0.05 m/s. The initial planning time is 27.3 s and 20.5 s
respectively, and the average replanning time is 11.0 ms and
21.0 ms. Those numbers are similar to those in Tab. II,
which shows that the additional structural complexity of
the environment does not directly translate into significantly
longer time computation.

VII. DISCUSSION AND CONCLUSION

In this paper we presented a complete system to allow
ground robots to climb stairs and, more generally, navigate in
a 3D environment. This system is based on point cloud data
and does not attempt to fully reconstruct the environment,



but instead uses lazy tensor voting to assess traversability.
We evaluated the system in an easy 2D environment and
also on a challenging 3D staircase, showing that the robot is
actually able to climb stairs up and down.

So far, this system has been implemented for static en-
vironments. The map is loaded before path planning and
is never updated. Moving to a dynamic environment would
pose two different issues: dynamic obstacles that need to be
avoided with short time delays, and significant changes in
the environment such as the collapsing of part of a building
or, more commonly, the closing of a door or the motion of a
furniture. Both types of changes need to be properly handled
by the mapping software. If mapping is able to signal the
addition or subtraction of a set of points, then the result of
tensor voting can be updated for the relevant cells and the
cost values updated at the path planning level. The choice of
D* as search algorithm allows to replan with updated cost
with only the necessary computations.

In general, our system is still sensitive to the quality of
the representation. Normal vectors for instance, play a central
role in both the traversability assessment and the computation
of the configuration of the flippers. The saliency computed by
tensor voting is also directly use to know whether there is a
plane of not. However, the saliency value highly depends on
the density of points. Thus some parameter tuning is needed
to provide a reasonable scale for this saliency.

Finally, the choice of constant replanning for path ex-
ecution instead of trajectory tracking, is also not trivial.
This choice avoids the complex geometrical problem of both
finding a reliable closest point in a 3D path on an implicit
surface given the presence of obstacles, and computing con-
trol inputs to move closer to the path. However, replanning
generates a new path without regard to the past execution.
More specifically, it does not take into account the fact that
the robot may have just overcome an edge and should still
stay in the transition posture for the flippers. We solve this
issue by keeping the memory of an eventual transition in
progress.

As a conclusion, we believe that the proposed approach
has great potential to endow most ground robots with real
3D navigation capabilities.
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