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Abstract—Normal estimation is the basis for most applications
using pointcloud, such as segmentation. However, it is still a
challenging problem regarding computational complexity and
observation noise. In this paper, we propose a normal estimation
method for pointcloud using results from tensor voting. Com-
paring with other approaches, we show it has smaller estimation
error. Moreover, by varying the voting kernel size, we find it is
a flexible approach for structure extraction as well. The results
show that the proposed method is robust to noisy observation and
missing data points as well. We use a GPU based implementation
of Sparse Tensor Voting, which enables realtime calculation.

I. INTRODUCTION

ESTIMATION of surface normal is one of the fundamental
problems for pointcloud analysis. It is still a challenging

problem for the case of real data from mobile robotics system,
because of the following major reasons:

• Unreliable observations: the unreliability is multi-fold. In
figure 1, we show a cropped part of pointcloud observed
from an indoor semi-structured environment. Outliers,
shadow points, non-uniform distributions, missing points
etc. can be seen all over the place. These unreliable
observations make data modeling subtle.

• Application criteria: since estimation results of point-
cloud are used differently for applications, in order to fit
various requirements or constraints, several compromises
may be demanded.

• Computational complexity: we could see from figure 1
that the number of points are usually huge. Though
subsampling is usually performed, the computational cost
is still a bottleneck for most applications.

Respecting with these three major difficulties, we tackle the
segmentation problem based on tensor voting framework [1]
using a parallel implementation.

A. Contributions

We address the following two aspects in this paper:
• Surface normal estimation using sparse tensor voting. We

compare two different algorithms in terms of precision
and complexity. We show that the proposed algorithm is
flexible in structure extraction.

• A GPU implementation of sparse tensor voting. We show
significant improvement in performance comparing with
CPU implementation.
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Fig. 1. Clip of a typical pointcloud and common observation noises.

B. Arrangement

The remainder of this paper is arranged as follows. We start
with introducing related works. In section III, we compare ten-
sor voting based normal estimation algorithms with a related
common algorithm. The parallel implementation is presented
in IV, followed by experiments on real dataset in section V. At
last, we draw conclusions and introduce our vision for future
work.

II. RELATED WORK

A. Range Image and Pointcloud

Pointcloud is sometimes also referred as “range image”.
Usually these two terminologies are not distinguished. We un-
derstand range images are the 3d data which can be considered
to be captured by a single scan, namely a grabbed frame from
3D range finders. On the other hand, point cloud is usually
more complex. It can be combined with several registered
scans. It means that the structure can not be directly repro-
jected to a 2d observation plane without losing information.

Several works regarding range image segmentation have
been proposed. These works are based on different features,
such as edge, projected as from 2d images [2], [3], [4],
[5], [6], [7]. Then computer vision techniques are applied to
process the data in 2D. The main drawback of these works
is that they rely on almost-clean dense representations of



the target models, which is not the case for most robotics
applications. Moreover, the back-forth projection between 2d
and 3d representation is time consuming. The ideal case
is that all scans are with 0-noise and uniformly distributed
points. For typical robotics applications, since the range finder
is mounted on a moving platform and surveillant the work
space from different viewpoints, these problems are however
inevitable. Taking the neighbourhood of certain points into
account is the key technique to deal with these issues. The
conducted missing information can be possibly obtained by
local parametrical modeling (e.g. surface model [8], [9]),
non-parametrical regression [10], [11], [12], and other local
embedding techniques [13]. Regarding propagation, they are
usually broadcast over field [14], structured grid [15], [16], or
over unstructured graph [17] etc.

B. Normal based Segmentation
Surface normal is a local consistent feature. Therefore it is

widely used for pointcloud analysis. Regarding segmentation,
one early work by Pulli et al [7] aims at segmenting range
images into homogeneous regions, by decomposing x- and y-
components of the normal vectors. It assumes perfect dense
point clouds and the resulting algorithm only deal with seg-
mentation in 2.5D. Normal estimation can also be based on
local constrained least square modeling [18]. These normal
estimation results often lead to clustering or segmentation of
pointcloud, such as by an initial segmentation in normal space,
then refines in distance space [19]. Teutsch et al presented a
clustering algorithm for subset segmentation [20], which tar-
gets at segmentation of point clouds without plane-assumption.
[21] introduced an incremental way to model different clusters
by using both angular and distance constraints. For further
references, [22] gave a recent report on different criteria for
surface normal estimation of 3D range data.

C. Tensor voting
Tensor voting [1] is originated in computer vision. It has

been extended to several applications related to segmentation
[23], [24]. Through these works, tensor voting has shown
its importance in reconstructing missing structures and local
information registration [25], [26]. We consider it is one of
the most important algorithms for structural analysis, because
it is extraordinary performance in its tolerance to noise and
missing data, its consistency for local information and intuitive
extraction of evidence saliency etc. Nevertheless, the compu-
tational cost of Tensor voting is high. The original algorithm
has complexity O(N2). We propose a parallel computation
frame stimulated by [27]. Comparing with this existing work,
our algorithm is more optimized considering the advanced
calculation characteristics of CUDA, in order to improve
calculation efficiency, e.g. using coalesced memory access,
avoiding atomic operation and implementing online tensor
split etc.

III. SPARSE TENSOR VOTING AND NORMALS

In this section we introduce the novel approach to estimate
surface normals based on pointcloud directly, which enables

a smooth and more precise estimation result comparing with
parametrical algorithms. We starting with introducing a widely
cited normal estimation algorithm, then describe the proposed
approach. The discussion of the relation and difference be-
tween two methods is shown in the end.

A. Normal estimation

1) PCA based algorithm using k-NearestNeighbour (kNN):
Principle component analysis (PCA) is used for PCL [28],
which we take for main comparison. We name the algorithm
that combining direction vectors to kNN and PCA analysis as
kNN-PCA in this paper.

In spite of several variations, the kNN-PCA algorithm can
be summarized as follows. It aims at finding the solution for
normal vector −→n by using the eigenvector corresponding to
the minimum eigenvalue of covariance matrix C, expressed
as:

C =
1

k

k∑
i=1

ξi(pi − p̄)(pi − p̄)T (1)

where k is the number of considered nearest neighbours; ξi is
weighting factor for i-th neighbour; pi’s are kNN points and
p̄ is the mean of all k neighbours. ξi’s are commonly equal.
We could imagine that for highly noisy data and structural
extraction, kNN-PCA is not feasible, because it relies much on
local characteristics, which is fragile against noise or missing
data.

2) Tensor Voting: Tensor Voting [1] is a computational
framework used for structural extraction based on saliency of
basic evidences. It originated in computer vision problems.
King extended its application regarding pointcloud based ter-
rain modeling and proposed an optimized stick voting field
[26]. Following a generic pipeline described in [29], we
construct sparse ball voting fields eyes(3), and broadcast it
through each neighboring point by a decay function:

k(d, σ) = e−
d2

σ2 (2)

where d is the Euclidean distance between the voter and votee,
and σ is a selected kernel size. For robotics applications,
the kernel size can be chosen as the size of the navigation
footprint. In this work, we omit dense voting process, which
is often performed after sparse voting. Nevertheless it is a pow-
erful tool for further structural inference such as topological
segmentation.

The collected votes by each point is also a tensor containing
the neighbouring structural information. The eigen decompo-
sition of the resulting 3× 3 tensor T can be formulated as:

T = λ1ê1ê1
T + λ2ê2ê2

T + λ3ê3ê3
T

= (λ1 − λ2)ê1ê1
T+ (stick component)

(λ2 − λ3)(ê1ê1
T + λ2ê2ê2

T )+ (plate component)

λ3(ê1ê1
T + ê2ê2

T + ê3ê3
T ) (ball component)

(3)
where λi’s are eigenvalues sorted in decreasing length se-
quence, êi’s are the corresponding eigenvectors. We could see
that the stick saliency can be represented by λ1 − λ2, which



is highlighted by colormap shown in figure 2(c) and 4(c). The
stick saliency for each point indicates how confident that a
point can be considered as lying on a plane. The corresponding
tensor, indicating the plane, is characterized by the normal
direction of the local plane ê1.

3) Surface normal estimation evaluation: The comparison
of the aforementioned two algorithms is shown in figure 2.
The tests are performed on a simulated surface given by figure

(a) Raw simulated noisy data

(b) Estimated surface normals by kNN-PCA

(c) Estimated surface normals by Sparse Tensor Voting

• Surface Equation:{
F = 1− 0.02x2 − 0.02y2 − z + ω = 0

ω ∼ N(0, 0.1)

• Normal direction ground-truth:

∂F

∂x, y, z
⇒ −→ngt = (−0.04x ,−0.04y ,−1)T

(d) Setups

Fig. 2. Normal estimation

2(d). The colormap in figure 2(a) shows the elevation of points

in z direction. The comparison between the direct normal
estimation by kNN-PCA and sparse tensor voting is subtle,
because the weighting factors are different for every points
in the neighbourhood of a point, affected by kernel size σ.
In order to have a fair comparison, we perform sparse voting
first, then calculate the equivalent k by the mean number of
voters per votee.

We can consider the kernel function as a probability density
function (PDF), since the integral tends to a constant σ

√
π at

infinity. A numeric method is used to accumulate the function
value starting from 0, approximating the integral of this PDF.
We use third quartile [30] of the kernel function for statistical
coverage, which leads to the sphere volume within 0.78σ. We
consider the equivalent number of nearest neighbours by

n3rd−quartile =
π(0.78σ)2

π(3σ)2
· E(Nσ)

where S is the area of the surface, E(Nσ) is the mean number
of voters per votee, 217.3 points. We take n3rd−quartile = 15
points. The histograms of the angular errors for both algo-
rithms are shown in figure 3. They depict that the proposed
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(a) Angular Error Histogram by Ten-
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Fig. 3. Error Analysis

algorithm using sparse tensor voting is more reliable then
kNN-PCA.

4) Complexity: The analysis of time complexity is shown
in table I. It indicates that in general the complexity of Tensor
Voting is higher than kNN-PCA. To alleviate the computation
time, we use a GPU implementation described in section IV.

5) Discussion: Similar as kNN-PCA, Tensor Voting
smoothes out noise by eigen decomposition as well. Therefore
the two algorithms are inherently the same. The difference of
performance comes from the definition of weighting factors of
1. They are introduced by the decay function (2). Moreover, by
allowing this dynamic weighting of the related neighbours, the
non-uniform distribution has less impact on the result. Another
benefit is that by tuning kernel size σ, plane structures can be
loosely defined. It is very useful to smoothing regions with
dynamics. For example, if stairs are traversable for a rescue
robot, they can also be selectively assumed to be a plane,
so that connected stairs can be clustered as one topological
node. This concept will greatly help the path planning using
topological maps. The example from a real dataset by varying
kernel size is shown in figure 4. We could see that by varying



TABLE I
TIME COMPLEXITY OF NORMAL CALCULATION

Method Complexity Parameters

kNN-PCA O(N logN) +N × (O(k logN)×O(c3)) k: number of considered neighbours;
kNN Tensor Voting O(N logN) +N × (O(k logN)×O(c3)) c3: complexity of eigen decomposition of a 3× 3 matrix;

Naive Tensor Voting (CPU) O(N2) +N ×O(c3) N : number of data points.
Naive Tensor Voting (GPU) O(hGPU ) +O(N) +N ×O(c3) hGPU : Overhead for GPU assignment and memory copy;

(a) Surface Normal estimation by ten-
sor voting σ = 0.1m

(b) Surface Normal estimation by ten-
sor voting σ = 0.5m

(c) Plane (stick) saliency by Sparse
Voting σ = 0.5m

(d) Edge (plate) saliency by Sparse
Voting σ = 0.5m

Fig. 4. Different results by varying kernel size σ and saliency extraction by sparse voting

the kernel size σ, different results can be obtained. With
smaller σ, the estimation will be more constrained in local
area; on the other hand, greater σ can get the normal in a
larger area, e.g. the stairs in green rectangle can be considered
as a complete plane. This feature will facilitate the execution
of topological planning for instance. Additionally, we can also
obtain the plane and edge saliency of the points as shown in
figure 4(c) and 4(d). The conducted results will shown in our
further report.

IV. SPARSE TENSOR VOTING AND TENSOR SPLIT ON GPU

We summarize the parallel tensor voting framework in this
section. At the same time, we address several technique details
which directly related to the performance.

A. Structure Overview

Comparing with [27], we use iteration of voter’s as base
loop instead of votee based iteration. We considered the
following two reasons:

1) The final output is gathered information by each votee.
When use voter based iteration as base loop, the gener-
ation of output needs non-coalesced access of memory
space. It is extremely inefficient for most GPU hardware
comparing to coalesced access [31].

2) Because of the non-coalesced access, atomic operations
are required, which is again a performance blocker for
GPU computation. It is reported to be thousands of times
slower than direct cycle [32]. The proposed voter based
loop will alleviated this by direct shared memory access.

The sparse voting kernel is depicted as figure 5. There are
two main blocks executed on GPU lying in the middle part of
figure 5, which are designed for tensor field propagation and
tensor split respectively. The tensor split algorithm is using
orthogonality constraints proposed in [33].

token ← globalIdx; 
foreach point p as voter
{
    vote = cast_tensor_field(p, token);
    field[token] += decay()*vote;
}
get: field[token]

token ← globalIdx; 
eigenvalues, eigenvectors
    = eigen_decomposition(field[token])
saliency{stick, plate, ball}
    = tensor_decomposition(
           eigenvalues, eigenvectors)
get: saliency[token], eigenvectors

PointCloud

Tensor Representation

Copy From CPU to GPU

Copy from GPU to CPU

Kernel Allocation

GPU

Fig. 5. Algorithm overview for GPU based sparse tensor voting

B. Implementation

In order to improve the performance, we used several
conducted techniques. The comparison by applying these
techniques (mean of 5 runs) are shown in table II, where we
executed sparse tensor ball voting with the same kernel size
for 14K points. We start with the result of an optimized CPU
code, followed by the naive GPU implementation [27]. Then
by applying different techniques, we reach to the proposed



Method Exe. time (ms) Speed-up Accu. speed-up Comment

CPU 728479 / / optimized code
naive GPU 11165.6 65.24x 65.24x using Atomic operations

apply fast math 2287.4 4.88x 318.45x e.g. fsqrt rn
using voter loop 1119.4 2.04x 650.72x

using shared memory 1063.6 1.05x 684.85x

TABLE II
PERFORMANCE GAIN BY OPTIMIZATION

algorithm. We could see that the proposed framework, which
uses voter loop instead of voter loop greatly improves the
calculation time. Further results will be shown in the next
section.

V. EXPERIMENTS AND DISCUSSION

A. Effect of Kernel size and GPU performance

The size of the voting kernel σ will greatly affect the
computational complexity. A greater σ leads to quadratically
more points to vote. By varying the size of σ, we show the
execution time of sparse tensor voting and tensor split in
figure 6. The dataset is the stair pointcloud shown in figure 1
which contains 14K points. Please note that for standard tensor
voting, points within the range of 3 times σ are considered.
The number of votes is illustrated in the lower figure of 6. It
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Fig. 6. The upper figure shows the comparison of execution time for different
implementation. The lower figure show different number of votes by changing
kernel size σ.

depicts the results on CPU and two different types of GPU’s.
We could see that the GPU implementation is superior to CPU
in terms of calculation speed. Moreover, since the allocation
of GPU computation is in unit of blocks, the increment of

computational time is less various than CPU for large number
of points.

B. Normal estimation results on datasets

Several tests for normal estimation using the proposed
algorithm are carried out. We show the qualitative results based
on “Apartment” and “Mountain Plain” from [34] in figure 7
and 8 respectively.

(a) Overview of the area (b) Estimated Surface Normal

Fig. 7. Estimated normal for a typical apartment environment, 63.9K points,
taking 645 ms, σ = 0.2m, considering mean 275 neighbours’ votes.

(a) Overview of the area (b) Estimated Surface Normal

Fig. 8. Estimated normal for a typical outdoor field environment, 40.8K
points, taking 337 ms, σ = 1.0m, considering mean 2113 neighbours’ votes.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a surface normal estimation algo-
rithm using sparse tensor voting. It allows flexible structure
extraction by tuning the size of voting kernel. Considering
the complexity of tensor voting, we propose a GPU imple-
mentation. It shows significant improvement in computation
time. We will carry out extended analysis such as pointcloud
segmentation based on the existing results in our future work.

REFERENCES

[1] G. Medioni, M. Lee, and C. Tang, A computational framework for
segmentation and grouping. Elsevier Science, 2000, vol. 1.

[2] M. Pilu and R. Fisher, “Part segmentation from 2d edge images by the
mdl criterion,” Image and vision computing, vol. 15, no. 8, pp. 563–573,
1997.

[3] M. Wani and B. Batchelor, “Edge-region-based segmentation of range
images,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 16, no. 3, pp. 314–319, 1994.



[4] D. Zhao and X. Zhang, “Range-data-based object surface segmentation
via edges and critical points,” Image Processing, IEEE Transactions on,
vol. 6, no. 6, pp. 826–830, 1997.

[5] Y. Alshawabkeh, N. Haala, and D. Fritsch, “Range image segmentation
using the numerical description of the mean curvature values,” in The
International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences. ISPRS Congress, 2008, p. 533.

[6] H. Iddamsetty, “Segmentation of range images for modeling of large
outdoor scenes,” 2003.
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