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a b s t r a c t

This paper presents a novel semi-autonomous navigation strategy designed for low throughput interfaces.
A mobile robot (e.g. intelligent wheelchair) proposes the most probable action, as analyzed from the
environment, to a human user who can either accept or reject the proposition. In the case of refusal,
the robot will propose another action, until both entities agree on what needs to be done.

In an unknown environment, the robotic system first extracts features so as to recognize places of
interest where a human–robot interaction should take place (e.g. crossings). Based on the local topology,
relevant actions are then proposed, the user providing answers bymeans of a button or a brain–computer
interface (BCI). Our navigation strategy is successfully tested both in simulation andwith a real robot, and
a feasibility study for the use of a BCI confirms the potential of such an interface.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Robots are present more and more in our daily life, not only in
industry but also at home as toys or as service robots like vacuum
cleaners or intelligent wheelchairs. They can be either controlled
by the human or autonomously perform a predefined task. Shared-
controlled, semi-autonomous and autonomous techniques have
been proposed, but they are often not adapted to low throughput
devices made for disabled or elderly people, such as sip and puff
systems, single switches or even the electroencephalogram-based
(EEG) brain–computer interfaces (BCI).

In this paper, a novel semi-autonomous navigation strategy
is proposed, with the aim of minimizing the user involvement.
Instead of requiring user control commands at each step, the
robot proposes actions (e.g. turning Left or going Forward) based
on environmental information (Fig. 1). The human monitors the
activity of the robot, rejecting propositions he disagrees with.
Given human rejection, the robot has to take a different decision
based on this additional information. The human workload is
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reduced to a yes/no input instead of having to select among
possible actions. In addition, human–robot interaction only
takes place at automatically recognized key locations. These
characteristics make our approach suitable for low throughput
devices.

Besides testing the system using a button interface, we per-
formed a preliminary study of the feasibility of using BCI systems
that exploit error-related EEG signals (ErrP); these signals indicate
human awareness of an erroneous system decision [1,2]. With
respect to our application, the ErrP is a convenient input for
paralyzed persons, as we could exploit the brain as an intuitive
communication channel. Nevertheless, due to the complex nature
of the brain signals in general, such interfaces are prone to
classification errors and the decoded commands thus require
adequate processing in our robotic system.

Moreover, efficient navigation in real environments requires
the robot to be able to deal with noisy information captured by
its sensors or delivered by the user interface, while inferring the
most appropriate actions to take. In order to cope with these
requirements, we develop a robotic controller that relies strongly
on Bayesian reasoning techniques.

As exposed above, we have a semi-autonomous artificial agent,
the robot, which analyzes its sensory data in order to extract the
required information for a proper human–robot interaction. The
resulting dialog is then composed of action propositions which
requires only high-level ‘‘binary’’ answers, as opposed to low-level
control commands encountered e.g. in common shared-controlled
systems. Furthermore, the use of an EEG-based BCI allows to
extract the user intended answer directly from his brain activity.

The structure of the paper is the following. Section 2 details the
semi-autonomous navigation system from the features extraction
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Fig. 1. Overview of our semi-autonomous navigation system, with two loops in interaction. On the right, the autonomous robot evolving safely in the environment, but
without knowing the user intended goal. On the left, the human–robot interaction in order to select which action to be executed at a given place.
Fig. 2. Semi-autonomous navigation (SAN) system: details of the processing
of the local sensory data, composed of three sub-tasks: the features extraction,
the recognition of places of interests such as crossings or door openings, and the
computation of a first probability distribution over the possible actions P(A) (action
filtering).

to the inference of the probability distribution over the possible
actions. Then, the human–robot interaction used for action
selection is described in Section 3. Section 4 presents the results of
experiments both in simulation and with a real robotic platform,
as well as the preliminary study with the BCI interface. Finally, we
conclude this paper in the discussion of Section 5.

2. Semi-autonomous navigation

Aiming at minimizing the required user involvement, we
developed a semi-autonomous approach where the robot evolves
autonomously most of the time, only requiring user inputs when
a navigational decision has to be made, e.g. when reaching a
crossing. This is illustrated in Fig. 1, where the intelligent system
– the robot controller – supervises two distinct loops. On the
right part, the autonomous part of the system is depicted, where
the sensory values are processed in order to compute coherent
motor commands. On the left part, the human–robot interaction
loop shows our intended dialog mechanism between the human
and the machine: the system will make propositions to the user,
e.g. Turning left or right, who will then either agree or disagree.

In our semi-autonomous navigation (SAN) approach, a module
termed Local reasoning (Fig. 2) is in charge of analyzing the
robot sensory input in order to recognize places where a
navigational decision has to be made (e.g. corridor crossing). Once
an interesting place has been reached the probability distribution
P(A) of possible actions is inferred by the Action filtering module.
This distribution reflects the robot analysis of the unknown
surrounding environment, where actions leading toward open
spaces are more probable than actions leading to an obstacle. In
this implementation the possible actions are Stop, Turn Right,Move
Forward, Turn Left, and U-Turn.
Once the action probability distribution has been computed,
a Human–Robot dialog is established in order to choose the
action intended by the user (see Section 3). That action is then
executed and the robot resumes autonomous behavior until a new
interaction is required. This section describes the robotic platform
used to test the proposed approach, and then we introduce the
modules presented in Fig. 2. Starting from the features extraction
and place recognition to the computation of an initial probability
distribution for initializing the dialog with the user.

2.1. Experimental setup

We test the developed system on a robot named BIBA and its
simulated equivalent. The BIBA robot (Fig. 3(a)) is a differential-
driven robot built by the Bluebotics company (http://www.
bluebotics.ch). The only used sensor is a SICK laser range finder
(http://www.sick.com), providing robot-centric measurements on
180° (361 measurements). The provided robot software is used
for implementing the navigation methods and automatic obstacle
avoidance, so that our system only provides local navigation
sub-goals (x, y, θ ) location in a robot-centric coordinate system.
This emphasizes the fact that the proposed approach for semi-
autonomous navigation is independent of the actual robotic
platform and motion planning implementation.

In addition to using the real robot, we also performed
tests in a simulation platform endowed with sensor emulation
capabilities. This allow us to extensively test different system
configurations and experimental conditions. For our work, we
relied on an in-house simulator named ‘‘morsel’’, developed at
ETHZ (Fig. 3(b)). Based on a 3D game engine, it allows to easily
create a realistic environment (with static and dynamic objects)
where the robot will evolve. Several sensors like laser scanners
and cameras are also available, enabling to have a full robotic
simulation. For the simulated navigation experiments, we rely on
a simple proportional controller with saturation conditions taking
advantage that the robot position in an absolute coordinate system
is continuously available.

2.2. Feature extraction

Based on the distance measurements coming from the laser
scanner (Fig. 4 first column), features are extracted for two
different purposes: first, to recognize places of interest where
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Fig. 3. (a) BIBA robot. (b) Morsel simulator.
Scene Raw laser data Maximal distances Direction of travel
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Fig. 4. Examples of feature extraction in a polar view. Left column, the raw laser data. Middle and right columns, the maximal distance in 9 sectors and, respectively, the
directions of travel (also in Cartesian coordinate). The green dotted line in the third column indicates the threshold value for extracting the openings.
human–robot interaction is required and, second, to identify
possible directions of travel.

For place recognition, the sensory data on 180° are divided in
N sectors of equal size and the maximal distance in each sector
is extracted (Fig. 4 second column). This allows to find all the
openings in the environment in front of the robot (the explanation
of this choice as well as the optimal number N of sectors will be
discussed in Section 2.3). Besides extracting themaximal distances,
the minimal measured distance is also stored for safety issues (see
Section 2.4 for details).

Concerning the navigation features, we need to find the
directions of travel corresponding to the three commands ‘‘Right’’,
‘‘Forward’’, and ‘‘Left’’.1 First, we extract the openings present
in the environment by searching for the peaks in the polar
representation of the distance measurements (Fig. 4 third column,
portion above the threshold value). As the robot could encounter
narrow cluttered environments or wide obstacle-free ones, a fix
threshold method would not be appropriated. Some empirical
tests showed that the mean between the minimal and maximal
measured distances is a good compromise for extracting the
desired directions without being stuck into a local maximum.

Then, we remove the openings being too narrow for the
robot and assign the remaining directions to the corresponding
navigation commands. If there is no direction associated to one
of these commands, the direction corresponding to the minimal

1 For the commands ‘‘Stop’’ and ‘‘U-Turn’’, the position of the robot remains
the same, the only possible movement being to turn on spot in case of a ‘U-Turn’
instruction.
measured distance in the related sector is used (making the robot
face the nearby obstacle). If there are more than one direction
associated to a command, the direction pointing the furthest away
is chosen. Finally, we check for possible collision and, if necessary,
modify the orientation accordingly. The final result is shown in
Fig. 4 in the rightmost column.

We also have to define an associated distance to travel to
each navigational command. Besides ensuring a minimal security
distance to the obstacles, the distances are also bounded to a
maximal value of 1.5 m, which the robot travels autonomously.2
This comes from the need to pass a crossing without triggering
unnecessary interactions with the user (topology recognition
turned off) as the local topology changes dramatically with the
movement, especially when turning right or left.

2.3. Place recognition

The next step in our SAN system is to recognize places of
interests where an interaction with the human is required, such
as crossings. We applied the same approach as in the work of
Tapus et al. [3] to detect interesting topologies ranging from
corridors to X-crossings, through the different L- and T -crossings
and dead ends. Therefore, we developed a Bayesian model in
order to recognize the different topology types given the N
maximal distances features. In the Bayesian Programming (BP)
formalism [4], the probabilistic relations between these distance
features F1···N and the topology classes T are described with

2 This value was found to be adequate for an indoor, furnished environment.
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Table 1
Results of the topology recognition for the classifier with 9 features. Corridor ( ),
left L-( ), right L-( ), left T -( ), right T -( ), front T -( ), andX-crossing ( ), dead
end ( ).

(%) (%) (%) (%) (%)
(%) (%)

(%)

94.9 3.6 1.2 0.3
0.1 99.2 0.7

0.1 99.1 0.8
0.3 0.1 98.5 0.4 0.7

0.5 95.0 4.5
0.1 0.1 99.8

3.2 2.2 0.1 94.5
0.1 99.9

the following joint probability decomposition: P(F1···N T ) =

P(T )
∏N

i=1 P(Fi | T ). The prior P(T ) is set to a uniform distribution
and the P(Fi | T ) are Gaussian distributions learned using training
data. Then, the Bayesianmodel computes P(T | F1···N), i.e. themost
probable topology class given the extracted features.

The optimal number N was determined experimentally by
testing this parameter in the range from 1 to 20. In a simulated
environment, the robot was randomly positioned and oriented in
front of a variety of crossings in order to gather learning data for
estimating the different P(Fi,N=n | T ) and then to test the resulting
classifier. This random positioning occurred in a rectangle of 1.3×

1.8m (depth×width) before the crossing.3 The orientation varied
of±20° from the corridor’s central direction. Both the training and
testing sets contained around 700 laser scan data for each topology
type.

We then compare the performance of the classifier for the dif-
ferent number of features taking into account not only the correct
classifications, but also the possible effects of misclassifications.
For example, a wrongly classified topology type may prevent the
system to go to a given free traversable direction in reality. Such a
case would have thus a major impact on the performance of a clas-
sifier. On the contrary, allowing a possible sub-optimal action may
have a smaller impact in performance. For this, we considered a
comparison method were wrong recognitions are assigned a neg-
ative cost as described here:

P(Correct) =

−
T

P(T )
−
T ′

P(T ′
| T ) P(Correct | T T ′)

P(T ) is the distribution of the testing data for each topological
class (appearance frequency); P(T ′

| T ) is the obtained confusion
matrix in the testing set (e.g. Table 1). P(Correct | T T ′) is the cost
matrix used for weighting the different classifier outcomes. In our
situation of topology recognition,we gave a positive score of+1 for
a correct classification. For incorrect classifications, negative scores
are given as follows: −1 for each action we should have been able
to execute given the true topology but which was not available for
the inferred topology, and −0.5 for each action we could wrongly
do according to the inferred topology as compared to the true one.
For example, a right T -crossing classified as a left T -crossingwould
have a reward of −1.5, given that we cannot go on the right (−1)
but are wrongly able to go left (−0.5).

This performance metric shows that 7 features or more yield
good, stable classification performances. Peak performance was
obtained in the case of 4, 9, and 15 features (performances of
96.19%, 95.80% and 95.81%, respectively). We chose a topology

3 For our SAN system, it is desirable to recognize a new place of interest before
having gone too far through it so as to better plan a motion sequence given the
specific kinematics of the robot. Therefore,we did not placed the robot in themiddle
of a crossing.
Table 2
Examples of relations between the topology type and the actions P(A | T ).

P(A | T )

Stop Right Forward Left U-Turn T

0.06 0.01 0.80 0.01 0.12
0.06 0.01 0.01 0.80 0.12
0.06 0.01 0.40 0.40 0.13
0.04 0.28 0.28 0.28 0.12
0.50 0.01 0.01 0.01 0.47

classifier relying on 9 features, as a good compromise between
4 and 15 features. Given the fact that we trained the system in
an ideal simulated environment, 4 features may not be able to
cope with the complex distance measurements in real, cluttered
environments, while using 15 features may lead to overfitting.

The classification accuracy for the classifier with 9 features is
shown in Table 1. Correct performance is above 95% in most cases,
the lowest one being 94.5% for the X-crossing. The navigation
could only be strongly affected in the two cases where a place of
interest is misclassified as a corridor, but they occur rarely (less
than 0.5%). Furthermore, these situations are supposed to rapidly
change due to the robot motion, resulting in a classification other
than a corridor.

Now that the system is able to recognize the topological nature
of the environment, the corresponding actions at a topological
change have to be deduced. This is done in the next processing step,
which is called once the system recognizes with a clear confidence
a new topology type (i.e., when the probability difference in the
two most probable topology types exceeds 0.5).

2.4. Action filtering

The final purpose of the local reasoning system is to get an
initial probability distribution over the actions the robot could
execute, so as to engage a dialogwith its user. Given the previously
recognized topology, this probability distribution could be easily
obtained by relating each possible crossing topology t with a given
distribution P(A | T = t), filtering out unprobable actions. By
doing this, we would break up the uncertainty propagation from
the place recognition stage to the later processing steps, as we
would maintain only the value with the maximal probability. Such
a simplification might also discard valuable information, as the
second most probable topology could be related to alternative
actions.

Nevertheless, in the action filtering step, we take into account
possible topology misclassification as well as some constraints
related to security issues. From the place recognition step, we
obtain the probability distribution P(T ). Then, the topology is
related to the actions A through the probability table P(A | T ),
given a-priori, as partly illustrated in Table 2.

Concerning safety issues, we constraint the system to either
stop or do a U-turn if theminimalmeasured distance to an obstacle
is below a given safety distance. In probabilistic approach, this is
done by adding a constraint variable C which takes the value of
1 if the minimal distance Dmin is above a fixed security distance.
Depending on the value of C , the actionswill either reflect the ones
predefined in Table 2 or the stop/U-turn alternatives.

We could have build a specific Bayesian program for our
action filtering procedure, having the following joint probability
distribution,

P(T A Dmin C) = P(T ) P(Dmin) P(C | Dmin) P(A | T C).

However, instead of having a separate program relying on P(T ),
we included the different terms we presented here into the place
recognition step. Fig. 5 shows the complete Bayesian program
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Fig. 5. Bayesian program for both place recognition and action filtering.

expressed in the BP formalism. As can be seen, besides the
inference of the topology type, the new question we ask to the
program is P(A | F1 · · · FN Dmin), i.e. the probability distribution
over the actions given the extracted features and the minimal
distance. There is thus a marginalization step over the topology
types T .

3. Human–robot interaction

If two or more actions have a similar probability to be
executed, the robot cannot knowwhich one fits better the human’s
navigation intention. There also could be the case when the robot
has a wrong belief about the actions (e.g. the user wants to stop
in front of a wall to look at a painting). Therefore, the human is
involved in the control loop by monitoring propositions made by
the mobile robot.

A dedicated process is in charge of selectingwhich actionwill be
proposed to the human based on the action probability P(A) (from
Action Filtering). It further interprets the user inputs so as to update
P(A). The human–robot dialog continues until an action is likely
enough as to trigger its execution by the robot.

An important issue is how to provide feedback to the user about
the proposed action. In a previous study we compare several types
of feedback principles used for proposing actions to the user [5].
The three major human modalities were covered (sight, hearing,
touch) and two kinds of user interfaces were tested (keyboard and
BCI). Visual feedback was found to be a good feedback modality
both frompsychophysicsmeasures aswell as elicited brain signals.
Furthermore it allows its extension to a large number of possible
propositions.

Complementary, the user has to provide an answer to these
propositions, e.g. ‘‘Yes’’ or a ‘‘No’’. Common specialized interfaces
such as single or multiple switches, or sip and puff systems can be
directly used. Interfaces with a richer output, such as joysticks or
eye/gaze tracking systems, may be used as well by first processing
their output in order to assign a given subregion of their working
Table 3
Confusion matrix of the classification of the error potential (ErrP) taken from [1].
Ik stands for the real user intended response and Ok for the observed signal
classification (EEG decoded response) at time k. Note the asymmetry of the
confusion matrix.

P(Ok | Ik) Ok = no ErrP (%) Ok = ErrP (%)

Ik = no ErrP 92.0 8.0
Ik = ErrP 26.5 73.5

space to a particular command. Potentially, detection of error-
related evoked EEG signals elicited in the user’s brain in case of
disapproval may be also used to this purpose [2,1].

A simple dialog management strategy can be used if an ideal
interface is used, e.g. by proposing alternative actions as long as
the user answers ‘‘No’’. However, particular attention has to be
taken if the interface is prone to errors, as is the case of BCI
systems. In this case, the actual user intend has to be inferred
during the whole dialog process, possibly composed of multiple
propositions and answers. Inspired from studies in spoken dialog
systems, we designed a Dynamic Bayesian Network (DBN) in order
to track the user intended action [6]. The proposed action, the user
answer obtained from the user interface, as well as the interface
accuracy are the three inputs to the DBN. The interface accuracy
is represented as a probability table in the form of P(Ok | Ik),
i.e. the probability that the interface observes a human answer Ok
at step k given the true intended answer Ik (Table 3). It serves to
correct the user answer. This adapted user answer, together with
the proposition, allows then for an adequate update of the initial
probability distribution over the actions P(A).

Then, a strategy is required for selecting which action to
propose and when the system has to stop the dialog and proceed
to the execution of the selected action. Several strategies were
tested during a user study, both from a theoretical and a user
point of view. Unsurprisingly, the preferred solution was to simply
propose the most probable action, as it is more logical for the user.
Executing an action after a single acknowledgment would be a
risky strategy if an uncertain interface such as a BCI is used. We
thus wait until the probability difference between the two most
probable actions exceeds a given threshold.

4. Results

We perform several experiments with the simulated and real
robot in order to evaluate the ability of the proposed system to
efficiently navigate based on our human–robot interaction frame-
work. We assess the performance of the place recognition pro-
cess as well as the interaction mechanism. Moreover, preliminary
results of the EEG potentials evoked during navigation are also
presented.

4.1. Simulations

We evaluated the system performance in a navigational task
for different conditions. In all cases, the goal is to take the robot
from a start position (S) to a goal location (G). The environment
was designed so that a place could be reached through different
paths, which is useful for simulating unforeseen situations such
as blocked passages (Fig. 6). The goal of these experiments is to
show the performance of the SAN system evolving in unknown
environments (i.e. the ability to identify locations where an action
has to be selected) and to assess the benefit of our Bayesian-
based action selection process. For the latter case, two distinct
parameters will be varied: the actual interface accuracy and the
knowledge the SAN system has about the interface accuracy (i.e.
the P(Ok | Ik) distribution). For proper assessment of these
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Fig. 6. Simulated environment. In white, the possible rooms; in light grey, the
traversable areas; in dark grey, obstacles (plants, holes, etc.); S, the start position;
G, the place to be reached; and * an example of crossing with non-perpendicular
directions. Environment with (a) all paths allowed and (b) with some corridors
blocked (represented by a thick black line). (c) Places where a topological change
was automatically identified across all the conditions. (d)Manually built topological
map, where nodes correspond to the places of interest.

Table 4
Conditions tested in simulation. TP, True Positive, and TN, True Negative, rates
represent the percentage of correct classification for both error and correct classes.
BF knowledge is the information the Bayesian filter has about the accuracy of the
input system (P(Ok | Ik)), whereas the simulated interface accuracy is shown in the
Accuracy column. The last column shows the success rate (goals reached) for each
condition.

BF knowledge Accuracy Success rate
TP (%) TN (%) TP (%) TN (%)

1 Autonomous behavior 18
2 100 100 100 100 100
3 C2 + blocked corridors (Fig. 6(b)) 100

4 100 100 92 73.5 100
5 100 100 75 75 94
6 100 100 50 50 10

7 92 73.5 92 73.5 100
8 92 73.5 85 65 100
9 92 73.5 75 90 100

conditions we simulate the human–robot interface for different
performance levels.

For the given task, the shortest path in terms of decision
points requires 6 human–robot dialogs with an ideal system,
whichwould recognize perfectly each crossing andwould navigate
autonomously between them. If the robot was unable to reach the
goal in less than 30 steps, the trial was stopped and labeled as a
failure. Each experiment was composed of 50 trials.

Fig. 6(c) shows the places where the system triggered an
interaction with the human user, i.e. each dot corresponds to a
topological change as described in Section 2.3. As expected, they
are largely located around crossings and corners with a higher
density in the left part of the environment due to the trajectories
taken by the robot (see below). Comparison of these points –
identified automatically by the system – with an ideal topological
map of the environment (Fig. 6(d)) confirms the good performance
of the place recognition module.

We simulated nine experimental conditions as summarized
in Table 4. They can be separated in three different groups. The
first three conditions compare the contribution of the user in the
control loop. The following three conditions compare different
levels of reliability of the human–robot interface, for a system
that assumes a perfect interface. Finally, the last three conditions
Fig. 7. Robot trajectories for the different input interface accuracies. The thickness
of the line represents the number of times the robot crossed a particular segment,
as shown on top. (a) Robot driving autonomously (C1). With no specific filter
knowledge about the input system accuracy: (b) Ideal user interface (C2); (c) Ideal
user interface, blocked scenario (C3); (d) EEG interface (C4); (e) 75% interface (C5);
(f) Random interface (C6). Last three plots show performance of a Bayesian filter
aware of the performance of the EEG interface: Simulated EEG performance (g) case
I (C7); (h) case II (C8); (i) case III (C9).

emulate a system that takes into account a predefined HRI
reliability. In addition to the success rate, the robot trajectories for
all conditions are shown in Fig. 7.

Condition 1 corresponds to the autonomous navigation of the
robot without user’s input. In this case, the robot selects the
most probable action at each place of interest according to the
action probability distribution P(A). Condition 2 uses an ideal user
interface that allows to correctly select the desired action with
a minimal amount of interactions. Condition 3 uses the same
user interface but two passages of the environment are blocked
(Fig. 6(b)) thus forcing the user to take a detour. As shown in
the last column, autonomous navigation (condition 1 − C1) only
reached the goal room in 18% of the time, since the robot moves
around the whole environment without knowing the goal location
(Fig. 7(a)).4 In contrast,when the user input is available – indicating
the direction to the goal – the system achieves 100% accuracy in
both conditions 2 and 3, being able to reach the goal through the
shortest available paths.

Then, the influence of the interface reliability is addressed in
conditions 4 to 6. To that purpose, different interface accuracies
are simulated: the reported EEG performances from [1] (C4), then
a 75% condition (C5), and finally a random interface (C6). For these
situations however, the SAN system assumes a perfect interface so
as to focus our attention on the impact of the actual interface on
the navigation performance. The Bayesian filter knowledge about
the interface, i.e. the P(Ok | Ik) distribution, will therefore describe

4 Moreover, the robot has a tendency to move towards the right. This
phenomenon has its origins in the selection process of the most probable action:
when two actions have the same probability, the first one in the tuple (Stop, Right,
Forward, Left, U-Turn) is selected.
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Fig. 8. (a) Number of recognized places of interest, where a navigational decision had to bemade (equivalent to the number of steps). (b) Total traveled distance. (c) Number
of questions asked to the user in order to select an action. (d) Total number of questions asked to the user in order to go from the start location to the goal destination. The
first condition (autonomous robot) was not considered for (c) and (d). Boxplot representation, with stars indicating outliers.
a 100% correct classification of the user signals. Although the
accuracy of the input systemwas diminished, perfect performance
was achieved in condition 4, while condition 5 reached 94% of
success. In these conditions, the user was able to mainly keep the
robot on the shortest path, having sometimes to make a detour
or to recover from a wrongly selected action (see the thin lines in
Fig. 7(d)). Finally, a random interface (C6) leads to equally random
trajectories thus resulting in the lowest performance, 10%. This
condition is also worse than the autonomous motion (C1), as often
opposite actions were successively selected (e.g. Forward followed
by a U-Turn).

The last 3 experiments also emulate the use of a brain–machine
interface, but the Bayesian controller takes into account the
reported accuracy of the BCI system (P(Ok | Ik) distribution, taken
from [1]). Condition 7 simulates the case where the BCI accuracy
corresponds to the controller’s settings, while the remaining two
conditions emulate different accuracies to simulate intra-subject
variability of the brain signals.5 In condition 8, the accuracy
decreases for both recognizing the presence and the absence of the
ErrP signal. In condition 9, a ‘‘No’’ is better recognized than a ‘‘Yes’’.
Perfect task performance is achieved in the three conditions, with
small differences in the traveled paths (Fig. 7(g)–(i)).

The same trends are observed in Fig. 8. It shows the number
of places where human–robot interactions took place, the total
distance traveled by the robot, the number of questions asked at
each place of interest, as well as along the whole trajectory. It can
be seen that for conditions 2 and 3, similar number of questions
were asked in order to select one action. Given the increased path
length of C3 due to the blocked corridors, the number of decision
points is higher.

5 Note that BCI performance may vary due to changes in the experimental
protocol, and feedback variations.
For condition 4, the number of questions before an action is
selected is similar than the two previous conditions. However,
given the lower interface accuracy, wrong actions are selected,
resulting in longer paths and, accordingly, more encountered
decision points. Then, more single questions are asked during
conditions 5 and 6, as the user is less accurately understood. This
of course leads to an increasing number of wrong selected actions,
with the longest paths corresponding to condition 6.

In the last three conditions, where the Bayesian filter had an
estimation of the accuracy of the input system, the number of
questions asked to the user is similar to all previous conditions,
except for some unusual situations wheremore than 10 successive
questions appeared. Nevertheless, the paths traveledwere optimal
in nearly all cases as can be confirmed by the number of decision
points and the traveled distance (conditions 7 and 9 similar to
the ideal condition 2). The smaller interquartile range of C9 with
respect to C7 when looking at the number of decision points
suggest that a better recognition of a ‘‘No’’ than a ‘‘Yes’’ answer has
a positive impact on the path length, as the selection of a wrong
action is more easily prevented. However, this is at the cost of
significantly more single questions. Condition 8, where the user
interface had an important decrease in accuracy, performed worse
than C7 and C9, as more incorrect actions were selected. But it
is still better than C5 (75% interface accuracy with no knowledge
from the Bayesian filter) in terms of traveled paths.

Comparing conditions 7–9 to condition 4 (simulated EEG
interface with, resp. without the corresponding knowledge of
the Bayesian filter), the benefit of providing the Bayesian filter
with the mean accuracy of the input interface resides in the
more directed navigation towards the goal destination (note also
the line thickness difference between Fig. 7(g)/(i) and (d)). This
improvement is at the cost of more human–robot interactions, as
more evidence is required from the system in order to select an
action.
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Fig. 9. One example of path driven by the real robot in an office environment. The robot started at the position indicated by the star, went along the corridor and visited
two other offices. It ended at the position indicated by a diamond. The grey offices had their doors opened.
4.2. Real robot navigation

With the BIBA robot, we conducted one experiment in an office
environment, with a scenario involving the visit of three different
rooms. We registered both the traveled path and the locations
where a new topology type was recognized, and thus where a
human–robot interaction took place.

Fig. 9 shows one path of the robot. As can be seen, the robot
successfully completed its task by first going out of the starting
room, moving towards the end of the corridor, turn back and then
visiting two other rooms. Note that the robot did not went so far
into the offices for safety reasons, as the offices were all furnished
and as we only sense the environment on an horizontal plane
at roughly half the height of the robot; moreover, people in the
offices kept working normally as we performed the experiments.
We test the developed system in an unmodified environment so
as to assess our approach with a real platform and to validate the
simulation results.

The scenario was repeated three times and leaded to the
following number of decision points: 22, 28, and 30. Numerous
office doors were opened (as indicated in grey in the figure).
All these openings were correctly recognized by the topology
classification module, leading to many decision points. The
difference is related to the fact that people were moving in the
corridor and some doors were temporally opened or closed. The
probabilistic nature of our robotic system also leads to different
solutions even if all the trials had the same initial conditions.
However, it mainly consists of different trajectories or interaction
locations rather than a different amount of decision points.

4.3. EEG-error-related potentials

A potential use of the proposed approach is its coupling
with brain–computer interfaces that decode the error-related
potentials. However, previous related BCI studies were mainly
based on simple stimuli [2,1]. As a further assessment of the
viability of the use of EEG signals in real conditions we performed
preliminary experiments where we record EEG potentials while
the usermonitors the navigation of the robot in real environments,
driving around the laboratory facilities, as well as in a realistic
simulation (9 and 7 possible goals respectively).

The task to be solved by the subjects was to bring the robot to
goal locations randomly selected by the operator of the experiment
by confirming or rejecting the robot propositions. During the
experiment, the brain activity of the human subjects was recorded
while the robot navigates through the environment. Two sessions
were performed with the simulated robot and one with the real
one; at each session the user is asked to navigate to 5 and 10 goal
destinations per session, respectively.
During the experiments the user remotely monitors the robot
while observing a video stream provided by an on-board high
quality camera. When the robot comes to a crossing, actions
are proposed with a visual feedback superimposed at the center
of the video image (Fig. 10). A fake user application (emulating
the decoding of EEG signals) was providing answers to the
propositions, with a predefined error rate of 20% of the time. EEG
signals are recorded at 512 Hz, spatially filtered by removing the
average activity across electrodes (i.e. CAR referencing) and time
filtered in the range 1–10 Hz. Following previous studies, ErrP
analysis is based on the activity of frontocentral electrodes elicited
by the feedback onset [2,1].

Fig. 11 shows the evoked potentials obtained during both
simulated and real robot navigation. For sake of comparison,
the ERP reported in a previous monitoring experiment is also
shown [1,7]. It can be seen that the waveforms are similar in the
three cases, despite the fact that the first two involve a more
complex type of interaction, as well as the processing of richer
stimuli. Characteristic components of error-related potentials
already identified in simpler protocols also appear in the current
experiment; namely a first, small positive peak at about 200 ms
followed by a larger negative peak around 260 ms and a large
positive deflection peaking approx. at 320 ms.

These preliminary results show that error-related signals
observed in simpler experimental protocols are also elicited
during real human–robot interaction. Moreover, signal waveform
is strikingly similar despite the increased complexity of the current
task. More experimental recordings are currently undergoing in
order to assess the online detection of these potentials and the full
integration into the semi-autonomous navigation concept.

5. Discussion

In this paper, we detailed a novel approach for semi-
autonomous navigation systems in unknown environments. It
relies on the automatic detection of interesting navigational
points and a human–robot dialog aimed at inferring the user’s
intended action. During this dialog, the user can confirm or
reject the robot’s propositions making the system suitable for
low throughput interaction devices, including brain–computer
interfaces. Furthermore, building on previous studies on EEG
correlates of error monitoring, we show that the proposed system
can take into account the reported accuracy of BCI systems
in a probabilistic manner, and perform successfully. We assess
the performance of the system using experiments in simulation
and a real robot. Moreover, preliminary results on the EEG
activity generated during semi-autonomous navigation confirm
the presence of error-related signals and yield promising evidence
towards their future use in online setups.
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Fig. 10. Experimental setup of EEG recordings in real robot navigation. (a) The subject monitors the robot navigation through a video stream provided by an on-board
camera. (b) Action propositions are superimposed on the video stream in the form of visual icons.
c

Fig. 11. Grand average ERP signals at FCz electrode (error-minus-correct condition). (a) Monitoring simulated robot. (b) Monitoring real robot. (c) Previously reported ERPs
elicited by monitoring simple visual stimuli.
The basis of the whole process is the feature extraction step,
which provides pre-processed data to the topology recognition
algorithm aswell as local directions of travel for the future selected
actions. When having recognized a new place of interest, the robot
stops, computes an initial probability over the actions, and engages
a dialogwith the human user. Once an action has been selected, the
related local target location is passed to the robotmotion controller
for execution. The robot then navigates autonomously until a new
decision place is recognized and the process starts again until
bringing the user to his desired destination.

We tested each part of the local SAN system separately so as
to ensure their reliability. Unfortunately, we could not compare
the output of each step with a ground truth, as this was not
always available. For example, the extraction of directions of travel
provides satisfactory results when analyzed – subjectively – by
the programmer, but there is no objective optimal output. On
the contrary, we were able to analyze the topology recognition
algorithm thoroughly and the results were therefore reported.

Then, we reported experiments done in simulation as well
as with a real robot which mainly focused on the interaction
of all parts rather than their behavior taken separately. It was
shown that the SAN system is able to recognize the major places
of interest, as if we would have provided a topological map,
and to efficiently perform goal-directed navigation. Different user
interface accuracies were tested in simulation in order to see
their impact on the performance of our robotic system. For a BCI
(reported performances are 92% for true positive and 73.5% for
true negative classifications) or an ideal interface, the user could
fulfill the tasks in nearly all the cases. This was even possible with
a lower accuracy of 75% correct interpretation, with sometimes
somedetours,which constitutes an encouraging result towards the
future use of BCI-based systems.
As compared to shared-control approaches based on constant
input commands [8–10], our SAN system requires a low user
involvement thanks to the high-level commands provided at key
locations. Common semi-autonomous approaches [11–13] might
be competitive, however with the drawback of having to provide
timely precise commands in cruise control mode (risk of missing
an intersection). Furthermore, the selection of a command is
generally done on a predefined menu with a fixed amount of
available commands, which is not always optimal. On the opposite,
our approach is based on the proposition of meaningful actions,
accepted or rejected by a simple ‘‘binary’’ signal.

As extension of this work, we are designing a system for
known environments, where a map of the environment can be
learned online. Additionally, the robot can learn the human habits
according to contextual information such as the time of the
day or the ring of a phone. With such a knowledge, the robot
could propose better suited actions, or even goal destinations.
We will also continue to work on the online use of the BCI
interface assessing its accuracy in the real setup, as well as the
required reliability according to the task demands. It would thus
represent the first use of such brain signals for the steering of real
robotic applications. In parallel, we will study the possibility to
dynamically evaluate the need of the human user in terms of robot
control, i.e. allowing to choose between the SAN system presented
here or more traditional steering method (e.g. shared control)
according to the particular situations. To this end, additional user
signals could be required, e.g. continuous input commands, level
of control, or emergency signals.
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