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Abstract Among the various possible criteria guiding eye
movement selection, we investigate the role of position uncer-
tainty in the peripheral visual field. In particular, we suggest
that, in everyday life situations of object tracking, eye move-
ment selection probably includes a principle of reduction
of uncertainty. To evaluate this hypothesis, we confront the
movement predictions of computational models with human
results from a psychophysical task. This task is a freely mov-
ing eye version of the multiple object tracking task, where the
eye movements may be used to compensate for low periph-
eral resolution. We design several Bayesian models of eye
movement selection with increasing complexity, whose lay-
ered structures are inspired by the neurobiology of the brain
areas implied in this process. Finally, we compare the relative
performances of these models with regard to the prediction of
the recorded human movements, and show the advantage of
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taking explicitly into account uncertainty for the prediction
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1 Introduction

We usually make a few saccades per seconds. Saccades,
and other eye movements, may result from a decision on
where to look next, in order to gain information about the
visual scene by driving the fovea towards regions of inter-
est. Indeed, as the sensitivity and spatial resolution of the
retina decays towards the periphery of the visual field, we
are uncertain about the accuracy of what we perceive in the
periphery and about what we can expected to learn from
an eye movement towards a peripheral position. The uncer-
tainty is a common issue for both perception—because we
cannot be sure of what we perceive—and action—because
we cannot be sure of the consequences of our actions. In this
paper, we investigate the possible role of uncertainty evalu-
ation in selection processes related to active perception. We
build a Bayesian model inspired by the neurophysiology of
eye movement selection related brain regions, in order to
investigate eye movements selection during freely moving
eye multiple object tracking task (MOT).

1.1 Bayesian methodology

In order to handle uncertainty and to explicitly reason about
it, we use the Bayesian Programming framework
(Lebeltel et al. 2004; Bessière et al. 2008). This framework
provides a systematic procedure to build and use a Bayes-
ian model. Such a model uses probability distributions to
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represent knowledge with uncertainty. It then reasons about
this knowledge by applying the rules of probability theory.
More precisely, starting from a joint probability distribution,
marginalization and Bayes’ rules allow to compute any con-
ditional or marginal probability distribution. As this joint
probability is usually of very high dimensionality, we use
conditional independence hypotheses to decompose the joint
distribution in a simpler product of smaller distributions.

In the end, a Bayesian programmer specifies a set of vari-
ables, a decomposition of the joint probability distribution
and a mathematical expression for each factor that appears
in this decomposition. At that point, any distribution on the
variables can be computed. The programmer is usually inter-
ested on one particular distribution, which is called a ques-
tion. The inference can be automatically computed through
the use of both marginalization and Bayes rules.

1.2 Eye movement circuitry

Even if we do not have the pretension to build a complete
model of the neurophysiology of the brain regions related
to eye movement selection, the structure of our model is
inspired by their anatomy and electrophysiology. Saccadic
and smooth pursuit circuitry share a large part of their func-
tional architecture (Krauzlis 2004). Among those regions
containing saccadic and smooth pursuit subcircuits (Fig. 1),
the superior colliculus (SC), the frontal eye fields (FEF) and
the lateral bank of the intraparietal sulcus (LIP) in the pos-
terior parietal cortex have a number of common points. They
all receive information concerning the position of points of
interest in the visual field (visual activity), memorize these
positions (delay activity) and are implied in the selection of
the gaze targets among these points (presaccadic activity)
(Moschovakis et al. 1996; Wurtz et al. 2001; Scudder et al.
2002). These positions are encoded by cells with receptive/
motor fields defined in a retinotopic reference frame. Our
model is based on retinotopic probability distributions encod-
ing similar information (observations, memory of target posi-
tions, motor decision).

In the SC, these cells are clearly organized in topographic
maps, in various species (Robinson 1972; McIlwain 1976,
1983; Siminoff et al. 1966; Herrero et al. 1998). In prima-
tes, these maps have a complex logarithmic mapping (Fig. 2)
(Robinson 1972; Ottes et al 1986), similar to the mapping
found in the striate cortex (Schwarz 1980). Concerning the
FEF, mapping studies clearly show a logarithmic encod-
ing of the eccentricity of the position vector (Sommer and
Wurtz 2000), however complementary studies are necessary
to understand how its orientation is encoded. Finally, the
structure of the LIP maps is still to be deciphered, even if a
continuous topographical organization seems to exist, with
an over representation of the central visual field (Ben Hamed
et al. 2001). Given the lack of quantitatively defined FEF and
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Fig. 1 Premotor and motor circuitry shared by saccade and smooth
pursuit movement (Macaque monkey). BG basal ganglia, BON brain-
stem oculomotor nuclei, FEF frontal eye fields, LIP lateral bank of
the intraparietal sulcus, SC superior colliculus, SEF supplementary eye
fields, TH thalamus, Verm cerebellar vermis. In light red regions using
retinotopic reference frames to encode visual, memory and motor activ-
ity, refer to text for more details. Adapted from (Krauzlis 2004) (color
in online)
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Fig. 2 Macaque collicular mapping. The angular position of targets
in the visual field (right) are mapped onto the SC surface (left) using
a logarithmic mapping. The grey areas represent the same part of the
visual field in both representations

LIP mappings, we assume that they share similar properties
with the SC one and thus use the log complex mapping of
the SC for all the position encoding variables of our model.

The neurons related to the spatial working memory in SC
(Mays and Sparks 1980), FEF (Goldberg and Bruce 1990)
and LIP (Gnadt and Andersen 1988; Barash et al. 1991a,b)—
also called quasi-visual cells or QV—are capable of dynamic
remapping. These cells can be activated by a memory of the
position of a target, even if the target was not in the cell’s
receptive field at the time of presentation. They behave as if
they were included in a retinotopic memory map, integrating
a remapping mechanism allowing the displacement of the
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memorized activity when an eye movement is performed.
Neural network models of that type of maps, either in the
SC or the FEF, have already been proposed (Droulez and
Berthoz 1991; Bozis and Moschovakis 1998; Mitchell and
Zipser 2003). Such a mechanism, adapted to Bayesian pro-
gramming, is used in the representation and memory layers
of our model.

To summarize, though not strictly neuromimetic, the lay-
ered structure of our Bayesian model is based on log complex
retinotopic maps with remapping capabilities, encoding the
filtered visual input, the memorized position of targets of
interests, and the generation of motor commands.

1.3 Experimental protocol

In order to study selection of eye movement in a controlled
task, we use eye movement recordings from a freely mov-
ing eye version (Tanner et al. 2007) of the classical MOT
task (Pylyshyn and Storm 1988). Eye movements in MOT
have only recently attracted interest (Tanner et al. 2007; Fehd
and Seiffert 2008; Zelinsky and Neider 2008). The original
task was designed to investigate the distribution of covert
attention with eye movements constrained by a fixation cross
(Cavanagh and Alvarez 2005), while we looked at how free
eye movements might optimize the tracking. Figure 3 illus-
trates this experiment in which participants are presented
with a set of targets among a number of distractors. All of
these objects are indiscernible 1◦ large discs and move in
a quasi-random pattern. The task is to remember which of
these objects are the targets (see Appendix A for a complete
description). With this experimental paradigm, the visual
scene is composed of simple geometric features therefore
allowing for a study of the eye movement selection that
occurs in this context.

Fixation

Cueing
1.08sec

Tracking 
5sec

Response
max 20sec

Fig. 3 Typical multiple object tracking experiment. A set of simple
objects is presented, the targets are identified as the flashing ones, then
the flashing stops and all the objects move around independently. After
they stop moving, the subject must identify the targets

First we describe the Bayesian models we propose. Then
we present the global results indicating that uncertainty is
useful and some specific situations shedding light on the dif-
ferences between the models.

2 Methods

The model we propose is composed of two parts. The first
part deals with the perception and memory of the visual scene
(representation model). The second part deals with the actual
selection of where to look next (decision model).

Both models are expressed in a retinal reference frame,
with a logcomplex mapping as explained above.

2.1 Representation

The representation part of our model is a dynamic retinotopic
map of the visual environment. This representation is struc-
tured in two different layers. The first layer is concerned only
with the integration of the visual input, i.e. the occupancy
of the visual scene without any discrimination between tar-
gets and distractors (occupancy grid). This model would be
homologous to the visual cells.

The second layer is a memory of the position of the targets,
reminiscent of the QV cells. It represents the knowledge of
the observer about the position of the targets, based on the
occupancy representation.

2.1.1 Occupancy grid

Occupancy grids are a standard way to represent the state of
an environment. They were originally introduced for the rep-
resentation of obstacles in robotics applications (Elfes 1989).
The general idea is to discretize the environment into a grid
and to assign a variable in each cell of the grid stating whether
there is an obstacle or not. The occupancy grid is therefore
the collection of probability distributions over each variable
in the grid.

We apply this model to the presence of objects in the visual
field. More precisely, we introduce a collection O of binary
variables Ot

(x,y), one for each timestep t ∈ [[0, tmax]] and
location (x, y) ∈ G whereG is a regular grid in the retino-cen-
tered logcomplex reference frame.1 We also assume that we
have visual inputs in this same reference frame, represented
by a collection V of binary variables V t

(x,y) for t ∈ [[1, tmax]]
indicating if an object (either target or distractor) is perceived
in the corresponding cell. Finally, we include some past eye
movement information Mt in order to model the remapping

1 Omission of an index or exponent in the variable name indicates the
conjunction of all of those variables for the missing index varying in its
full range: O = O0→tmax = ∧tmax

t=0 Ot = ∧tmax
t=0

∧
(x,y)∈G Ot

(x,y).
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capability exhibited by cortical and subcortical retino-cen-
tered memories.

We write the joint probability distribution over all these
variables by assuming the occupancy of the cells are inde-
pendent one from another conditionally to the past eye move-
ment and the former state of the grid. We also assume that
the observation corresponding to a cell is independent on all
other variables conditionally to the current occupancy in this
cell. This is summarized by the following factorization of the
joint distribution:

P(OV M)

= P(O0)

tmax∏

t=1

P(Ot V t Mt | Ot−1)

=
∏

(x,y)∈G
P(O0

(x,y))

×
tmax∏

t=1

⎡

⎢
⎣

P(Mt )

×∏
(x,y)∈G

[
P(Ot

(x,y) | Mt Ot−1)

×P(V t
(x,y) | Ot

(x,y))

]
⎤

⎥
⎦

In this expression, P(O0
(x,y)) is an arbitrary prior on the occu-

pancy of the visual scene, P(Mt ) is a distribution over the
eye movement that can be chosen arbitrarily as the results of
the inference do not depend on it, provided that it is not zero
for the actual eye movements observed. The relation between
the occupancy and the observation, P(V t

(x,y) | Ot
(x,y)), is a

simple probability matrix chosen to state that there is a high
probability of observing an object when there is one and con-
versely of not observing anything when there is nothing.

The evolution of the grid, with the remapping capability,
is specified by the transition model, P(Ot

(x,y) | Mt Ot−1),
which essentially transfers the probability associated to
antecedent cells for the given eye movements to the cor-
responding present cell with an additional uncertainty factor
(see Appendix B.1 for details).

With this description, updating the knowledge over the
occupancy of the visual field corresponds to the following
question for each time t :

P(Ot | V 1→t M1→t ) (1)

where V 1→t is the conjunction of all variables V u for u ∈
[[1, t]]. This expression can be computed in an iterative man-
ner using Bayesian inference:

P(Ot | V 1→t M1→t )

∝
∏

(x,y)∈G
P(V t

(x,y) | Ot
(x,y))

×
∑

Ot−1

[∏
(x,y)∈G P(Ot

(x,y) | Mt Ot−1)

×P(Ot−1 | V 1→t−1 M1→t−1)

]

However, this expression comprises a summation over all
possible grid states, which is computationally intensive.

Therefore we approximate the inference over the whole grid
by a set of inferences for each cell that depend only on a
subset of the grid:

P(Ot
(x,y) | V 1→t M1→t )

∝ P(V t
(x,y) | Ot

(x,y))

×
∑

Ot−1
A(x,y)

[
P(Ot

(x,y) | Mt Ot−1
A(x,y)

)

×∏
A(x,y) P(Ot−1

(x ′,y′) | V 1→t−1 M1→t−1)

]

where A(x, y) is the subset of the cells (x ′, y′) of the grid
that are the antecedent of the cell (x, y) by the current eye
movement Mt .

2.1.2 Positions of the targets

The previous model describes the visual scene without dif-
ferentiating between targets and distractors. In order to take
this two classes into account, we add a set of variables T t

i to
represent the location of each target i ∈ [[1, N ]] at each time
t ∈ [[0, tmax]] in the logcomplex retino-centered reference
frame.

This representation is the standard way to represent the
location of some objects and serves a different purpose than
the occupancy grid, which is only the representation of the
visual scene.

The model is extended with this additional variables by
adding a new factor in the joint distribution, P(T t

i | T t−1
i Ot

Mt ), that represents the dynamic model of targets:

P(OV MT )

=
∏

(x,y)∈G
P(O0

(x,y))

N∏

i=1

P(T 0
i )

×
tmax∏

t=1

⎡

⎢
⎢
⎢
⎣

P(Mt )

×∏
(x,y)∈G

[
P(Ot

(x,y) | Mt Ot−1)

×P(V t
(x,y) | Ot

(x,y))

]

×∏N
i=1 P(T t

i | Mt Ot T t−1
i )

⎤

⎥
⎥
⎥
⎦

The additional factors P(T 0
i ) are priors over the positions of

the targets that can be set according to the starting position
of the targets as shown in the cueing phase.

The dynamic model of targets is very similar to the
dynamic model of objects but with the occupancy grid on
objects as observation (see Appendix B.2 for details).

At each time step, the relevant state of the representation
can be summarized by the following question for each target
i ∈ [[1, N ]] at each timestep t ∈ [[1, tmax]]:

P(T t
i | V 1→t M1→t ) (2)
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Bayesian inference leads to the following expression for this
question:

P(T t
i | V 1→t M1→t )

∝
∑

T t−1
i

⎡

⎣
∑

Ot

[
P(T t

i | Mt Ot T t−1
i )

×P(Ot | V 1→t M1→t )

]

×P(T t−1
i | V 1→t−1 M1→t−1)

⎤

⎦

where P(T t−1
i | V 1→t−1 M1→t−1) is the result of the same

inference at the preceding timestep, P(Ot | V 1→t M1→t )

the result of question 1 at the same timestep. The summation
of the whole grid, which is still computationally intensive,
can be approximated as above, by separating the cells.

Both questions 1 and 2 are the current knowledge about the
visual scene that can be inferred from the past observations
and movements, and the hypotheses of our model.

2.2 Decision models

Based on this knowledge, the observer has to decide where
to look next in order to solve the task. We propose different
models in order to test different hypotheses. First, we make
the hypothesis that this representation model is useful for
producing eye movements. To test this hypothesis, we com-
pare a model that does not use the representation with one
that does.

Then, the main hypothesis is that uncertainty, explicitly
taken into account, can help in the decision of eye move-
ment. Therefore, we compare a model that does not take into
account explicitly the uncertainty with one that does.

In the end, we need to specify three models: one that
does not use the representation model (πA), one that uses the
representation model without explicitly taking into account
uncertainty (πB), and finally one that uses the representation
model and explicitly takes into account uncertainty (πC ).
Each model πk will infer a probability distribution on the
next eye movement represented by a new variable Ct ∈ G at
each time t ∈ [[1, tmax]]:
P(Ct | V 1→t M1→t πk)

This variable is the model’s homologue to the motor cells
found in LIP, FEF and SC.

2.2.1 Constant model

This model is a baseline for the other models. We look for
the best static probabilistic distribution that can account for
the experimental eye movement. Formally it is specified as
being independent on time and on the observations:

∀t ∈ [[1, tmax]], P(Ct | V 1→t M1→t πA)

= P(Ct | πA) = P(C1 | πA)

In these conditions, it can be shown that the best distribu-
tion P(C1 | πA), according to the measure defined Sect. 3.1,
assigns the probability of each individual discretized motion
to be equal to its frequency in the experimental data.2 There-
fore, we learned this distribution from our experimental data,
using only a randomly selected subset in order not to overfit
our models.

2.2.2 Targets positions

The second model we propose uses the knowledge from the
representation layer to determine its eye movements. More
precisely, it tends to look at locations where targets are close
to another, in a kind of fusion process. Its prior will follow
the statistical distribution of eye movements and the likeli-
hood will be based on the distributions on the targets location
inferred in the representation layer.

The decomposition is as follows:

P(CV MT | πB)

=
tmax∏

t=1

⎡

⎣
P(V t Mt | πB)

×∏N
i=1 P(T t

i | V 1→t M1→t πB)

×P(Ct | T t πB)

⎤

⎦

where:

– P(V t Mt | πB) is an arbitrary prior that is not used in the
inference,

– P(T t
i | V 1→t M1→t πB) is the result of inference 2,

– P(Ct | T t πB) is the result of the inference in a fusion
submodel over the targets that yields:

P(Ct | T t πB) ∝ P(Ct | πA)

N∏

i=1

P(T t
i | Ct )

where P(Ct | πA) is the prior taken from the constant
model and P(T t

i | Ct ) a distribution centered on Ct that
expresses a proximity between Ct and T t

i (concretely a
Gaussian distribution centered on Ct ).

With this model, the distribution on eye movement can be
computed with the following expression:

P(Ct | V 1→t M1→t πB)

∝ P(Ct | πA)

×
N∏

i=1

∑

T t
i

[
P(T t

i | V 1→t M1→t πB)

×P(T t
i | Ct )

]

2 When restricted to time independence and assuming a uniform prior
over such models, our measure is a multinomial likelihood which leads
to a Dirichlet distribution according to the experimental frequencies.
The maximum of this Dirichlet distribution is the histogram of the exper-
imental frequencies.
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In short, this model is the product between the prior on eye
movement and each distribution on the targets convolved by a
Gaussian distribution. This expression shows that this model
is attracted towards the targets but without necessarily look-
ing at one in particular as balance between the distributions
on the targets can lead to a peak in some weighted sum of
their locations.

2.2.3 Uncertainty model

The behavior of the preceding model is influenced by uncer-
tainty insofar as the incentive to look near a given target is
higher for a more certain location of this target. As for any
Bayesian model, uncertainty is handled as part of the infer-
ence mechanism: as a mean to describe knowledge.

In this third model, we propose to include uncertainty as
a variable to reason about: as the knowledge to be described.
The rationale is simply that it is more efficient to gather infor-
mation when and where it lacks than when and where there
is less uncertainty.

Therefore, we introduce a new set of variables I t
(x,y) ∈

[0, 1], representing an index of the uncertainty at cell (x, y) ∈
G at time t ∈ [[1, tmax]]. Any index can fit as long as we can
correlate the value of this uncertainty index with the actual
uncertainty.

For simplification, we choose our uncertainty indices to
be equal to this probability of occupancy, as we represent
occupancy as binary variables. The relation between this
uncertainty index (probability distribution) and uncertainty is
such that a probability near 1

2 represents a high uncertainty
whereas a probability near 0 or 1 represent a low uncer-
tainty. Other spaces can be chosen for these variables, such
as entropy, but we keep the probability distribution to sim-
plify our computations.

As mentioned above, this model is structured around a
prior probability of motion which is filtered by these uncer-
tainty variables in order to enhance the probability of eye
movements towards uncertain regions. The prior probability
is the result of the preceding model πB .3

The decomposition of this model is as follows:

P(CV M I | πC )

=
tmax∏

t=1

⎡

⎣
P(V t Mt | πC )

×P(Ct | V 1→t M1→t πB)

×∏
(x,y)∈G P(I t

(x,y) | Ct πC )

⎤

⎦

where:

– P(V t Mt | πC ) is an arbitrary prior that is not used in the
inference,

3 This is a matter of presentation of the model. The complete expression
of πC can be written without reference to model πB but the addition of
uncertainty would be less clear.

– P(Ct | V 1→t M1→t πB) is the result of the previous
model,

– P(I t
(x,y) | Ct πC ) is a beta distribution that expresses

that for a given eye movement proposal Ct , I t
Ct is more

likely near 1
2 and distribution on I t

(x,y) for (x, y) �= Ct is
uniform.

This model computes the posterior probability distribution
on next eye movement using the following expression:

P(Ct | V 1→t M1→t I 1→t πC )

∝ P(Ct | V 1→t M1→t πB) × P(I t
Ct | Ct πC )

where:

∀(x, y), t ∈ G × [[1, tmax]],
I t
(x,y) = P(Ot

(x,y) | V 1→t M1→t )

as computed by Eq. 1.
This model filters the eye movement distribution com-

puted by the second model, in order to enhance the probabil-
ity distribution in the locations of high uncertainty.

3 Results

The output of our models is a probability distribution over
the eye position at each timestep. For such complex objects,
there are neither significance test nor an appropriate sensitiv-
ity analysis and the comparison is done using their respective
likelihood. However the likelihood is highly dependent on the
size of the data set. Therefore we first introduce a compari-
son method that does not depend on the size of the data set.
Then we present their results and comment them with respect
to the specific behavior of each model. Finally, we illustrate
the main differences between the various models by giving
examples of specific situations.

3.1 Comparison method

The decision models compute a probability distribution over
the possible eye movements at one moment, based on past
observations and their respective hypotheses (Fig. 4). We
can therefore compute, for each model, the probability of the
actual eye movements recorded from subjects in a given situ-
ation, as well as the probability of the whole set of recordings
with an additional independency assumption.

Probability values are only relative measures as, when the
possibilities are numerous, they tend to be very small. How-
ever, their comparison across models (which share the same
number of possibilities) indicates which model is a better
predictor of the recorded eye movements. This process is
known as the Maximum Likelihood method.
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(a)

(b)

(d)

(c)

Fig. 4 Example of probability distributions computed by each decision
model in the same configuration. The two halves of the representations
are drawn side-by-side. The plain lines are the iso-eccentricities and the
dotted lines are the iso-directions. The brightness of the cell indicates
the probability of the associated eye movement: a dark cell for a low
probability and a white cell for a high probability for the eye movement
toward this cell. Diamond position of a target, plus sign position of
a distractor, crossed circle next eye displacement. a is the probability
distribution of constant model. b shows the probability distribution for
the target model that shows a preference for the targets. c shows the
probability distribution for the uncertainty model that highlights some
of the targets. d shows the position of the targets and distractors in the
visual field. Note that the probability distributions for model c favors
the next eye movement

However, except in very special cases, the likelihood of
a model would decrease exponentially toward zero with the
increase of the number of trials, while the likelihood ratio

between two models will diverge or converge exponentially
toward zero. Therefore, we compare our decision models
using the geometric mean of the likelihood of the observed
eye movements over each trial. The geometric mean allows
to be a substitute for the complete likelihood, as it is its N th
root where N is the total number of trials, while providing
a measure converging to a non-zero value as the number of
trials grows.

More precisely, let ct
n be the t th eye movement recorded

during trial n. The likelihood of a model π for trial n is:

tmax∏

t=1

P([Ct = ct+1
n ] | v1→t

n c1→t
n π)

The global likelihood of model π is:

N∏

n=1

tmax∏

t=1

P([Ct = ct+1
n ] | v1→t

n c1→t
n π)

Finally we define our measure µ to be the geometric mean
of the likelihood over all the trials:

µ(π) = N

√
√
√
√

N∏

n=1

tmax∏

t=1

P([Ct = ct+1
n ] | v1→t

n c1→t
n π) (3)

3.2 Results and analysis

The data set is gathered from 11 subjects with 110 trials each
for a total of 1,210 trials (Tanner et al. 2007). Each trial was
regularly discretized in time in tmax = 24 observations (with
a timestep of 200 ms) for a grand total of 29,040 data points.
The eye movement variable Mt is build from the difference
in gaze position between two successive timesteps. Part of
the data set (124 random trials) was used to determine the
parameters of the various models and the results are com-
puted on the remaining N = 1,089 trials.

Table 1 presents the ratio of the measure for each pair of
our three decision models computed for this data set. It shows
that the model which generates motion with the empiric prob-
ability distribution but without the representation layer is far
less probable than the other two (by respectively a factor 280
and 320). This shows that, as expected, the representation
layer is useful in deciding the next eye movement.

Table 1 Ratio of the measures for each pair of models

Model Model

Constant (πA) Target (πB ) Uncertainty (πC )

Constant (πA) 1 280 320

Target (πB ) 3.5 × 10−3 1 1.14

Uncertainty (πC ) 3.1 × 10−3 0.87 1
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Table 1 further shows that the model taking explicitly into
account uncertainty is 14% more likely than the model that
does not. This is in favor of our hypothesis that taking explic-
itly into account uncertainty is helpful in deciding the next
eye movement.

As explained above, the choice of the geometric mean pre-
vents the measure to converge toward zero and prevents their
ratios to raise exponentially as the number of trials grows. In
our case, the likelihood ratio between the model with explicit
uncertainty and the one without is 4.9 × 1063. With half the
trials, this likelihood ratio is the square root, that is only
7.0 × 1031. This shows that the likelihood ratio is indeed not
a stable measure with respect to the number of trials. We pre-
ferred a stable measure in order to have a more meaningful
value.

3.3 Typical situations

These results show a global agreement of the model with the
actual eye movements of the human participants. However,
there are some configurations where the models can have dif-
ferent relative performances. The analysis of such examples
can shed some light on the behavior of the various decision
models we proposed.

3.3.1 Examples where πC is more likely than πB

The global result shows that it is better to take into account
uncertainty explicitly for the choice of the eye movement.
We can further investigate by looking at the frames where
the difference in the likelihood is greatest.

We isolated two different categories of configurations
where model πC was especially better than model πB , exem-
plified in Fig. 5. The first category consists in scenes where
a target and a distractor are in a close vicinity and the eye
movement of the participant is around those objects (Fig. 5a).
In these case, the target model is simply attracted by the tar-
get whereas the uncertainty model is additionally attracted
by both objects due to their uncertainty.

The second category consists in occurrences of an eye
movement towards a distractor (see Fig. 5b). In this case,
the target model has no incentive for looking at this location
whereas there is always some uncertainty to investigate for
model πC .

3.3.2 Examples where πB is more likely than πC

Even if the global results are in favor of the model with
explicit uncertainty, there are cases where the target model
better predicts the eye movements. This happen mainly when
the eye movements occur in the middle of several targets but
not on a particular one (Fig. 6a). In this case, the fusion on
the targets employed by model πB can present a maximum

(a)

(b)

Fig. 5 Examples of eye movements better predicted by model πC than
model πB . The scene is presented in an eye centered reference frame.
Diamond position of a target, plus sign position of a distractor, crossed
circle next eye displacement. a The actual eye movement occurs towards
both a target and a distractor. b The actual eye movement occurs towards
an isolated distractor

in a center of mass of the targets, whereas the absence of
objects—and therefore the low uncertainty—will lower the
probability of this particular eye movement by model πC .

Figure 6b illustrates a second interesting case. The eye
movement occurs in between a target and a distractor. How-
ever, the occupancy grid at that time (Fig. 6c) shows that the
target is moving and the eye movement is near the previous
position of the target shown by a peak of occupancy in the
corresponding cell. Therefore the eye movement is near the
representation of the target. On the other hand, there is also a
great patch near the center of the visual field with a moderate
level of uncertainty where, consequently, model πC predicts
a high probability of eye movement.

3.3.3 Examples where πA is more likely than πB or πC

Finally, the constant model can also be the most likely one for
some particular configurations and movements. This occurs
mostly for fixations that are not directed to objects (for exam-
ple Fig. 7a). Indeed model πA is simply the global distribu-
tion of eye movements that are mostly of low amplitude (see
Fig. 4a) and the other models are mostly attracted to targets
or the uncertainty attached to objects.
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(a)

(b)

(c)

Fig. 6 Examples of eye movements better predicted by model πB than
model πC . The scene is presented in an eye centered reference frame.
Diamond position of a target, plus sign position of a distractor, crossed
circle next eye displacement. a The actual eye movement occurs in
between several targets. b The actual eye movement occurs towards an
isolated distractor. c Occupancy grid for the same configuration depicted
in b showing the eye movement is near the past location of the target

Figure 7b shows another occurrence of this situation with
a group of target on the right towards which the other mod-
els predict a high probability of movement. It happens that,
on the next frame, shown Fig. 7c, for which the situation is
similar, the participant looked towards this group of targets,
as predicted by both models πB and πC .

4 Conclusion and discussion

As a conclusion, we propose a Bayesian model with two
parts: a representation of the visual scene, and a decision
model based on the state of the representation. The represen-

(a)

(b)

(c)

Fig. 7 Examples of eye movements better predicted by model πA than
models πB or πC . The scene is presented in an eye centered reference
frame. Diamond position of a target, plus sign position of a distractor,
crossed circle next eye displacement. a The actual eye movement is a
fixation without object. b The actual eye movement is also a fixation
although there is a group of targets on the right. c Situation following
b where the eye movement is towards the group of targets

tation both tracks the occupancy of the visual scene as well
as the locations of the targets. Based on this representation,
we tested several decision models and we have shown that
the model that takes explicitly into account the uncertainty
better fitted the eye movements recorded from subjects par-
ticipating a psychophysics experiment.

In addition, the eye movement frequency shows that, most
of the times, the eye movements are of low amplitude, indicat-
ing either fixation or slow pursuit of an object. In these cases,
the constant model has a likelihood comparable with or even
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sometimes greater than the other two. Thus the difference is
due to the saccadic events, when the target and uncertainty
model have a higher likelihood than the constant one which
assigns a lower probability as the eccentricity grows. On the
other hand, the difference between the target model and the
uncertainty model is due to the filtering of the eye movements
distribution from the target model by the uncertainty. The dif-
ference is less substantial than for the constant model as the
uncertainty associated to the targets are often similar (iso-
lated targets with comparable movement profiles). It could
be interesting to enrich the stimuli in order to manipulate
uncertainty more precisely.

The stimulus is adapted from the classical MOT task used
primarily to study attention. Our model uses a set of vari-
ables to track the position of the targets. This set of var-
iable is fixed and finite (five in our model), which means
our model can only track as much targets as its number of
target position variables. The human subjects, however, are
also informed about the number of targets in the instruc-
tions. Experimental evidence suggests that human perfor-
mance drops if the number of target gets too high. For the
particular experimental design we used, the maximum num-
ber of targets consistently tracked was 5, which justifies our
choice of the number of target variables. Other experimen-
tal studies suggest that this maximum number of target is
not fixed and seems to depend on factors such as speed and
spacing of the objects (Alvarez and Franconeri 2007). In
addition, each of our target variables cover the whole visual
field (encoded in the logcomplex mapping) although there are
works indicating that some representation capacities are sep-
arated across the hemifields (Alvarez and Cavanagh 2005).
It could be interesting to test this in our model with a set
of target variables for the left part and another for the right
part. However, due both to eye movements and targets move-
ments, the targets sometimes change side, implying some
additional mechanism of communication between these vari-
ables.

Finally, one of the main features of our model is to place
all computations and representation in the logcomplex map-
ping found in the neurophysiology of some retinotopic maps.
To our surprise, we found in the psychophysical data that the
distribution of the objects positions is quite uniform in the
logcomplex mapping. This suggests a particular strategy for
the eye movements. One interpretation could be that the eye
movements are chosen in order to maximize the use of the
representation: that is, so that the objects are uniformly dis-
tributed in this representation. This seems to be an indirect
confirmation that eye movements are governed by structures
using this particular mapping.

Acknowledgments The authors acknowledge the support of the Euro-
pean Project BACS (Bayesian Approach to Cognitive Systems), FP6-
IST-027140. The authors thank Luiz Canto-Pereira, Heinrich Bülthoff,

and Cristóbal Curio for their involvement in the experimental aspects of
this work. The authors also thank warmly Julien Diard for the insightful
discussions about the preliminary model design.

Appendix A: Experimental protocol

This experiment is an adaptation of the classical MOT para-
digm from Pylyshyn and Storm (1988) (see Fig. 3) but with
eye movements. In the original task, participants were asked
to keep track of a given number of targets among identical
distractors as they all move independently on the screen. Par-
ticipants had to keep their gaze at a fixating point located on
the center of the screen. Therefore the targets will occasion-
ally be located in the periphery of the visual field, in the low
resolution areas of the visual field. Therefore we expect eye
movements to occur in order to keep track of targets.

A.1 Materials and methods

A.1.1 Participants

Eleven subjects participated in the experiment with normal
or corrected vision. Each session consists of 110 trials.

A.1.2 Apparatus

The stimulus is presented on a calibrated 21′′ Sony CPD-500
CRT monitor with a refresh rate of 100 Hz and a resolution of
1,024 × 768. Participants are positioned in front of the mon-
itor at a distance of 65 cm; at this distance the display sub-
tended a visual angle of 33◦ by 25◦. A chin rest ensures that no
head movement occurs during the experimental session. All
experimental sessions are performed in a sound attenuated
room with controlled artificial lighting. Eye movements are
recorded by an eye tracker system (EyeLink II, SR Research
Ltd.) with a sampling rate of 250 Hz and an accuracy of
ca. 0.3◦. The model was simulated offline with a timestep
of 200 ms using the difference in eye position between two
timesteps. No analysis of saccades, micro-saccades, pursuit
or fixation was needed in this respect.

A.2. Procedure

The display consists of ten identical objects, each one a white
circle subtending 1◦ of visual angle, with a luminance of
90 cd/m2 against a black background, in a room illuminated
with diffuse D65 light (70 cd/m2).

Targets and distractors are identical with the exception of
the initial phase in the beginning of each trial. In this phase,
five targets are cued by a series of three flashes, with a total
duration of 1,080 ms. After this initial phase, all objects begin
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to move in different directions, chosen from among 8 direc-
tions of the compass with a mean velocity of 5.1◦ per second.

The objects have random initial locations, directions and
speeds during trials but are constrained to keep a minimum
distance of 1.5◦ (Pylyshyn and Storm 1988).

Trials last 5 s and on the end of each trial participants are
asked to select targets with a mouse.

More details can be found in the description of experiment
B in (Tanner et al. 2007, paper in preparation).

Appendix B: Dynamic models

B.1 Dynamic object model

This dynamic model provides the transition probability dis-
tribution P(Ot

(x,y) | Mt Ot−1) that governs the evolution of
the grid with the remapping capability. In order to stress the
issue of the logcomplex mapping, we explicitly refer to the
visual coordinates (ρ, θ) as well as the logcomplex coor-
dinates (x, y). We also consider coordinates (ρ, θ)ant and
(x, y)ant to denote coordinates at the previous time step. In
the end, the decomposition is as follows:

P((x, y) (x, y)ant (ρ, θ) (ρ, θ)ant Ot
(x,y) Ot−1 Mt )

= P((x, y))P(Mt )P(Ot
(x,y))P((ρ, θ) | (x, y))

×P((ρ, θ)ant | (ρ, θ) Mt )P((x, y)ant | (ρ, θ)ant)

×
∏

(x ′,y′)
P(Ot−1

(x ′,y′) | Ot
(x,y) (x, y)ant)

where:

– P((x, y)) is an arbitrary unused distribution;
– P(Mt ) is an arbitrary unused distribution;
– P(Ot

(x,y)) is a uniform distribution;
– P((ρ, θ) | (x, y)) is a uniform distribution on the inverse

image of the position (x, y) by the logcomplex mapping;
– P((ρ, θ)ant | (ρ, θ) Mt ) is a Dirac distribution on the

image of (ρ, θ) by eye movement Mt ;
– P((x, y)ant | (ρ, θ)ant) is a Dirac distribution on the cell

corresponding to position (ρ, θ)ant;
– P(Ot−1

(x ′,y′) | Ot
(x,y) (x−1, y−1)) is a transition matrix that

states there is a great probability to keep the same occu-
pancy if (x ′, y′) = (x, y)ant, and is a uniform distribution
otherwise.

This model is used to compute the question P(Ot
(x,y) |

Mt Ot−1) using the following expression:

P(Ot
(x,y) | Ot−1 Mt )

∝
∑

(ρ,θ)

P((ρ, θ) | (x, y))P(Ot−1
(x̂,ŷ)

| Ot
(x,y) (x̂, ŷ))

where (x̂, ŷ) are the coordinates of the cell corresponding to
the image of (ρ, θ) by eye motion Mt .

This summation can be implemented by sampling the dis-
tribution P((ρ, θ) | (x, y)).

B.2 Dynamic target model

This dynamic target model is common to every target and
combines both the prediction of the position of the target
based only on eye movement (remapping) and the update of
this position according to the occupancy grid. It provides the
distribution P(T t

i | T t−1
i Ot Mt ) used in the representation

model.
The decomposition is as follows:

P(T t
i T t−1

i (ρ, θ) (ρ, θ)ant Mt Ot )

= P(T t
i )P(Mt )P((ρ, θ) | T t

i )

×P((ρ, θ)ant | (ρ, θ) Mt )P(T t−1
i | (ρ, θ)ant)

×
∏

(x,y)

P(Ot
(x,y) | T t

i )

where:

– P(T t
i ) is a uniform distribution;

– P(Mt ): is an arbitrary unused distribution;
– P((ρ, θ) | T t

i ) is a uniform distribution on the inverse
image of the position T t

i by the logcomplex mapping;
– P((ρ−1, θ−1) | (ρ, θ) Mt ) is Dirac distribution on the

image of (ρ, θ) by eye movement Mt ;
– P(T t−1

i | (ρ, θ)ant) is a Dirac on the cell corresponding
to position (ρ, θ)ant;

– P(Ot
(x,y) | T t

i ) states that it is more probable to have
an occupied cell in a neighborhood of T t

i , and that it is
uniform elsewhere.

This model is used to compute the question P(T t
i | T t−1

i
Ot Mt ) with the following expression:

P(T t
i | T t−1

i Mt Ot )

∝
∣
∣
∣E(T t−1

i , Mt )

∣
∣
∣

∏

(x,y)

P(Ot
(x,y) | T t

i )

where
∣
∣
∣E(T t−1

i , Mt )

∣
∣
∣ is the size of the set of the polar posi-

tions (ρ, θ) that are in relation with T t−1
i by the eye move-

ment Mt . This set can be obtained by sampling like in the
dynamic model.

Appendix C: Implementation details

The models presented are implemented in the Java language.
In all the examples, the grid G is composed of 24 × 29 cells
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for each hemifield and we used a timestep of 200 ms for the
representation and decision models.

Additionally, some of the probability distributions
described as factors in the decompositions are parametric
forms that need precise values to be involved in actual com-
putations. We explored the parametrical space and evaluated
each parameter set with our measure computed on a subset
of the experimental data.

Finally, in the representation model, the observation model
P(V t

(x,y) | Ot
(x,y)) is a 2×2 matrix with value 0.9 on the diag-

onal and 0.1 elsewhere
(

0.9 0.1
0.1 0.9

)

.

The transition matrix of the dynamic model is
(

0.95 0.1
0.05 0.9

)

.

The target observation model P(Ot
(x,y) | T t

i ) is of the

form 0.5 + 0.25

1+
(

d((x,y),T t
i )

0.02

)2 for an occupied cell and

0.5 − 0.25

1+
(

d((x,y),T t
i )

0.02

)2 otherwise with d((x, y), T t
i ) the dis-

tance between cell (x, y) and position T t
i in mm. The target

fusion model P(T t
i | Ct ) is a mixture between a Gaussian

and a uniform distribution: ∝ 0.25 + exp − d(T t
i ,Ct )

0.25

2
. In the

uncertainty decision model, the uncertainty fusion distribu-
tion P(I t

(x,y) | Ct πC ) is a symmetrical beta distribution with
parameter 0.075.
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