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We use multiple sensory modalities to perceive our environment. One of these
is optic flow, the displacement and deformation of the image on the retina. It
is generally caused by a relative motion between an observer and the objects
in the visual scene. As optic flow depends largely on three-dimensional (3D )
shapes and motions, it can be used to extract structure from motion (the sfm

problem). Motion parallax and the kinetic depth effect are special cases of this
phenomenon, noticed by Von Helmholtz (1867), and experimentally quantified
by Wallach and O’Connell (1953).

Extraction of shape from motion is a difficult issue for two main reasons: it is an
ill-posedandinverseproblem.Manydifferentcombinationsofshapeandmotioncan
lead to the sameoptic flow, so reconstructing a shape fromtheoptic flowcannot lead
toauniqueresult. Inthisaspect,sfm isanill-posedproblem.Furthermore,geometry
and optics can lead to the expression of optic flow given 3D structure and motion.
However, sfm is interested in the opposite; that is, sfm is an inverse problem.

Previous approaches to the sfm problem rely mostly on the rigidity assump-
tion, the hypothesis that optic flow is caused by the motion of a rigid ob-
ject. Under this assumption, the number of degrees of freedom of the motion
is greatly reduced, and it has been shown that little optic flow information is
required to recover the motion and the structure of the object (Ullman, 1979,
Mayhew and Longuet-Higgins, 1982). This assumption is supported by human
performance in some psychophysical experiments Wallach and O’Connell (1953),
Koenderik (1986). Some more recent models, relying on local velocity informa-
tion rather than on the full optic flow field, are consistent with human perfor-
mance (Todd and Bressan, 1990, Todd and Norman, 1991).

Extensive studies have investigated the perception by an immobile observer of
optic flow caused by a mobile object. However, sfm can also occur with a static
object for an observer in motion (Rogers and Graham, 1979). Until recently, it
was believed that for the same optic flow, perception is the same with object
motion or with subject motion (Wallach et al., 1974, Rogers and Graham, 1979).
However, it has since been shown that the observer’s movements influence the
perceived 3D shape and motion (Rogers and Rogers, 1992, Dijkstra et al., 1995,
Wexler et al., 2001b).
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Therefore, the stationarity assumption has been introduced to account for the
way that self-motion changes perception (Wexler et al., 2001b,a, Wexler, 2003).
The stationarity assumption states that the visual system prefers the solution
having minimal motion in an observer-independent, allocentric reference frame.
Therefore, the stationarity assumption is the minimization of absolute motion,
whereas the rigidity assumption can be seen as the minimization of relative
motion between points of an object. Neither of these assumptions can explain
human performance in the sfm task, and until now, no coherent model has been
proposed to integrate these two assumptions.

In this chapter, we propose a generic Bayesian model that integrates the sta-
tionarity and rigidity assumptions for the perception of 3D planar surfaces from
optic flow. The model accounts for the sfm performance of moving and station-
ary observers, as well as a number of other results reported in the literature. We
begin with a generic model of sfm, then we give its instantiation for the percep-
tion of a plane. We finally compare the results of this model with six experiments
found in the literature.

1 Model

1.1 Generic Model

The generic Bayesian model that we propose is a model of what an observer can
deduce from the limited information received from optic flow. To cope with this
limited information, this model uses probabilities to represent and handle the
uncertainties that it faces. We construct our model according to the hypotheses
evoked above. The first two are the stationarity (H1) and rigidity (H2) assump-
tions. Our model also assumes that the structure of the object is independent
of both its motion and the motion of the observer (H3). We follow the Bayesian
programming framework to specify this model (Lebeltel et al., 2004).

From relevant information to variables

For the general case of perception of an object by optic flow, we propose a model
that takes into account: (i) the observed optic flow (denoted Φ); (ii) the 3D
structure of the object (denoted Θ); (iii) the motion of the object (denoted X)
in the observer’s reference frame; (iv) the motion of the observer in the allocentric
reference frame (denoted M); and (v) the context of observation (denoted Λ).

From dependencies to decomposition

At the core of a Bayesian model lies the joint probability distribution over all its
variables. This joint distribution is the expression of the hypotheses of a model.
The structural part in the specification of the joint distribution summarizes the
dependencies and independencies between the variables. This structure is called
decomposition.
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Hypothesis H1 is the rigidity assumption, which states that the observed
optic flow is most likely that of a rigid object. As a consequence, the optic flow
depends on the relative motion, the structure of the object, and the conditions of
observation, but is independent of self-motion. This corresponds to the following
mathematical simplification:

P (Φ | Θ ∧ M ∧ X ∧ Λ) = P (Φ | Θ ∧ X ∧ Λ). (1)

The stationarity assumption (H2) states that the object motion is most likely
to be small in the allocentric reference frame. Therefore, the relative motion
depends on self-motion. We use Bayes’ rule to write:

P (M ∧ X) = P (M) P (X | M). (2)

Hypothesis H3 states that the structure of the object is independent of both
the relative motion of the object and self-motion. This translates as a product
of independent factors in the decomposition:

P (Θ ∧ M ∧ X) = P (Θ) P (M ∧ X). (3)

We also make the assumption that the conditions of observations are inde-
pendent of the position of the plane as well as the motion of the object and
self-motion. This is expressed as:

P (Θ ∧ M ∧ X ∧ Λ) = P (Θ ∧ M ∧ X) P (Λ). (4)

Finally, using Bayes’ rule, we can write:

P (Θ ∧ M ∧ X ∧ Λ ∧ Φ) = P (Θ ∧ M ∧ X ∧ Λ) P (Φ | Θ ∧ M ∧ X ∧ Λ). (5)

Combining equations 5, 1, 3, 4, and 2, we obtain the decomposition shown in
equation 6.

P (Θ ∧ M ∧ X ∧ Λ ∧ Φ) = P (Θ) P (M) P (Λ) (6)
× P (X | M)
× P (Φ | Θ ∧ X ∧ Λ).

This decomposition is the structural expression of our assumptions.

Physical and physiological laws → distributions

To derive a usable expression for the joint distribution, we must specify each
of the factors in the above decomposition. The first factor, P (Θ), is the prior
on the structure of the object. It represents what our model expects before
any observation. It can be an uninformative prior or it can reflect some bias in
the perception. The exact parametrical form depends on the actual experiment.
In the same way, the second factor P (M) represents the expectation by an
observer of her or his own motion. If we assume that the model has an exact
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knowledge of its self-motion (as will be the case later in this chapter), this
probability distribution is simplified in the final inference and thus can be left
unspecified. The same holds for the probability distribution over the conditions
of observation P (Λ). The inference will simplify this factor for any question in
which the conditions of observations are exactly known.

The fourth factor, P (X | M), specifies the relative motion expected from a
given self-motion. According to stationarity, the object is more likely to undergo
a smaller absolute motion. Therefore, the most probable relative motion should
be defined as the opposite of self-motion. The actual parametrical form varies
once again with the experiment, but a general expression could be proportional
to the exponential of the opposite of kinetic energy (Gibbs distribution). In some
cases (in an appropriate parameter space), this means a Gaussian distribution.

Finally, the last factor in decomposition 6 is the distribution on optic flow,
given the structure of the object, the relative motion between the object and
the observer, and the conditions of observation: P (Φ | Θ ∧ X). Following the
rigidity assumption, this distribution states that the most probable optic flow
is the theoretical flow of the object in this particular configuration, given this
particular motion.

Formalized questions

A probabilistic question is a distribution over some variables of the model, pos-
sibly given the knowledge of the values of other variables. With a completely
specified joint distribution, the answers to such questions can be mechanically
inferred with both Bayes’ and marginalization rules.

This model is designed for the perception of structure from optic flow. The
first question that we can ask is the probability of the object structure or shape
given the optic flow, the self-motion, and the conditions of observation, written
as P (Θ | ϕ ∧ m ∧ λ).1 This question is answered by the following expression,
given by Bayesian inference.

P (Θ | ϕ ∧ m ∧ λ)
= P (Θ)

∑
x∈X P (x | m)P (ϕ | Θ∧x∧λ)

∑
θ∈Θ P (θ)

∑
x∈X P (x | m)P (ϕ | Θ∧x∧λ)

. (7)

This is the computation that we have used to obtain the results shown later.
Given our hypotheses, this distribution represents our knowledge about the
structure of the object (including its relative position with respect to the ob-
server) that one can infer from the observation of optic flow and self-motion.

Furthermore, with this model, one can ask other questions. For example, one
may be interested in the estimation of self-motion from optic flow: P (M | ϕ).
This question can be used to study vection, in which optic flow induces the
sensation of self-motion. In the same manner, one can also study the direction
of perceived self-motion, called heading. With a single Bayesian model, different
issues can be investigated.
1 We use an upper case letter for a variable and lower case for the instantiation of a

variable with a particular value.
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1.2 Perception of a Plane

We can adapt this model to account for given situations. In this chapter, we
consider a set of experiments dealing with the perception of a planar object
through its optic flow. The observation is monocular, and the participant is
sometimes allowed to move along some degrees of freedom while maintain-
ing fixation. The observation can take place in either a small or large field of
view.

With this information, we instantiate the template model following the
Bayesian programming framework.

Variables

The first variable of the model is the optic flow. We must choose a representation
space adapted to the specifics of the experiments. When observing a plane, the
optic flow is uniquely determined by the derivatives of the image velocity with
respect to the image coordinates, up to the second order (Longuet-Higgins, 1984).
Therefore the chosen semantics and domain of Φ are these derivatives. We can
separate the optic flow into multiple components depending on the order of
derivation: Φ = Φ0 ∧ Φ1 ∧ Φ2.

As we consider a plane, the 3D structure of the object is restricted to its
position. The participant maintains fixation on a given point of the plane. This
way, only two parameters are required to specify the structure Θ. The extrinsic
orientation of a plane in 3D space is often parameterized by two angles, slant and
tilt (see Fig. 1(a)). Slant is the angle, in 3D space, between the plane’s normal
vector and the normal of the fronto-parallel plane. Tilt is the angle, in the fronto-
parallel plane, of the projection of the plane’s normal. For practical reasons in
the computations, we use the depth gradients along both the transversal and
vertical axes (respectively X and Υ ), as depicted in Fig. 1(b).

The motion X of the object in the reference frame of the observer is defined
by its rotation Ω and translation T components along the transversal, vertical
ang sagittal axes. Likewise, self-motion M is a set of translation and rotation
velocities of the eye of the observer. Finally, the context of observation Λ reduces,
for the experiments considered, to the size of the field of view, reduced to two
extreme cases: small and large fields of view.

Decomposition

The instantiated model inherits the conditional independencies of the generic
one. However, we can add some new simplifications in the joint distribution,
depending on our knowledge of our experiments. In this case, the choice of pa-
rameterization of the optic flow allows us to make each component independent
of the others, conditionally to knowledge of the relative position, relative motion
and conditions of observation:
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(a) (b)

Fig. 1. Illustration of the parameters of a plane. The object plane is shown in blue; the
(x, y, z) reference frame is shown in red, and the observer (shown by its eye) is located
at (0, 0, d > 0). (a) Illustration of the tilt τ and slant σ of a plane. The slant is the angle
between the object plane and the fronto-parallel plane. The tilt is the angle between
the vertical axis and the intersection of the object plane and the fronto-parallel plane.
(b) Illustration of parameters (X, Υ ) of a plane. In green, we show the intersections
of the object plane with both horizontal and sagittal planes. The respective slopes of
these lines are the X and Υ parameters of the plane.

P (Φ | Θ ∧ X ∧ Λ)
= P (Φ0 | Θ ∧ X ∧ Λ)
× P (Φ1 | Θ ∧ X ∧ Λ)
× P (Φ2 | Θ ∧ X ∧ Λ).

Furthermore, we can state that only the perception of second-order optic flow
depends on the size of the field of vision and that constant optic flow is generated
only by the relative translation in the fronto-parallel plane. Finally our operative
decomposition is:

P (Θ ∧ M ∧ X ∧ Λ ∧ Φ) = P (Θ) P (M) P (Λ)
× P (X | M)
× P (Φ0 | T)
× P (Φ1 | Θ ∧ X)
× P (Φ2 | Θ ∧ X ∧ Λ).

(8)

Distributions

As in the general case, we specify an exact parametrical form for each factor
of our decomposition. The difference resides in our knowledge of our particular
experiments.

We chose the prior on the position of the plane to be uninformative. That
is, we state that each position of the plane is equally probable. In terms of
probability distributions, this means that it is invariant by rotation around the
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fixation point. For a given position θ = (χ, υ) of the plane, the probability density
becomes:

P (χ ∧ υ) =
1
2π

(
1 + χ2 + υ2)− 3

2 .

As in the general model, the factors P (M) and P (Λ) can be left unspecified.
For P (X | M), the expression of stationarity, we chose a Gibbs distribution

with kinetic energy computed in the global reference frame. As X is expressed
as the linear and angular velocities with respect to each axis, this means that
P (X | M) is a product of Gaussian distributions.

Finally, rigidity is expressed by the factors P (Φ0 | T), P (Φ1 | Θ ∧ X), and
P (Φ2 | Θ ∧ X ∧ Λ). These distributions are chosen as Gaussian around the
exact values of the optic flow computed by the theoretical equations (detailed in
appendix A). The influence of the size of the field of view in the distribution of
the second-order optic flow is in the covariance matrix (see the implementation
for details).

Question

This is a model of the perception of a plane from optic flow. The question that
we ask, to compare our model with the experimental results, is: what knowledge
about the relative position of the plane can be deduced from the observation of
optic flow, self-motion and the conditions of observation? As noted above, this
becomes, in probabilistic terms:

P (Θ | ϕ ∧ m ∧ λ).

With a more specific decomposition than the generic model, we can write the
answer to this question with greater precision:

P (Θ | ϕ ∧ m ∧ λ)

∝ P (Θ)
∑

t∈T

P (ϕ0 | t)
∑

ω∈Ω

P (x | m)P (ϕ1 | Θ X)P (ϕ2 | Θ ∧ X ∧ Λ). (9)

Implementation

For the instantiated model, a number of parameters are necessary for the calcu-
lations.

With the notable exception of Gaussian distributions in some particular con-
ditions (linearity for instance, which is not the case here; see the appendix),
Bayesian inference is usually done with discretized or sampled variables. Table 1
gives the details of the ranges (minimum, maximum and number of samples in
between) and dimensionality of each component of Θ (top row), of the rela-
tive rotation (middle row), and of the relative translation (bottom row). Other
variables do not require discretization as their values are known for the inference.

Moreover, some of the distributions in our decomposition involve parameters;
for instance, the Gaussians on relative motion and optic flow. Table 2 presents
their respective covariance matrices. We notice that each one is diagonal and
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Table 1. Domains of the variables

Variable symbol min max
values by
dimension dimensions

Depth gradient Θ -4.125 4.125 33 2
Angular velocity Ω −1.375 rad.s−1 1.375 rad.s−1 11 3
Linear velocity T −1.375 m.s−1 1.375 m.s−1 11 3

Table 2. Covariance matrices for each factor of the joint distribution. From top to
bottom: distribution over the relative translation, relative rotation, order-0 optic flow,
order-1 optic flow, order-2 optic flow in a small field of vision and order-2 optic flow in
a large field of vision. Idn×p stands for the identity matrix of size n by p.

Distribution parameters
σT = 0.3 ∗ Id3×3 in m.s−1

σΩ = 1.2 ∗ Id3×3 in rad.s−1

σΦ0 = 1.0 ∗ Id2×2 in m.s−1

σΦ1 = 0.025 ∗ Id4×4 in s−1

σΦ2 | λ=SF = 5.0 ∗ Id2×2 in m−1.s−1

σΦ2 | λ=LF = 0.2 ∗ Id2×2 in m−1.s−1

that the covariance on optic flow is greater in a small field of view for second-
order optic flow than in a large field. Indeed, because second-order optic flow is
quadratic in the distance from the fixation point, it is harder to perceive in a
small field of vision than in a large field.

The results presented in the following section were all computed with this
single set of parameters using the ProBT inference engine for the calculations
(Lebeltel et al., 2004).

2 Results

In this section, we present six psychophysics experiments concerned with the
monocular perception of a rotating planar patch with a neutral or non-informative
texture. Therefore, the only cue for the plane’s relative position was its motion
via the optic flow. These experiments were previously reported by different teams
and admit some variations around a common set-up, involving the motion of the
observer’s head or eyes, or the plane, or both, as well as the size of the displayed
stimulus. This is in accordance with the choice of the variables of our model. For
each experiment, we present the results of the Bayesian model and compare its
performance with the participants’.
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2.1 Protocol

All these experiments share the same basic conditions of experimentation. They
were carried out by different teams, and the variations mostly concern the testing
of the various assumptions. Here, we present the common features, and we will
detail the differences when necessary.

The stimulus is an animation showing a 3D slanted plane in rotation. This
animation is displayed on a monitor or on a screen. The plane is figured by a
random-dot texture, considered to be uninformative concerning the slant and
tilt of the plane (see Fig. 2). The size of the display depends on the condition of
observation. It can be either a small field of vision (inside a cone of 5 to 10◦ of
semi-angle) or a large field of vision (around 60◦).

Fig. 2. Example of a frame of the animation presented to the participants. The display
is composed of white dots of the object plane, projected on a black background. As the
plane moves in 3D, the dots move according to their position on the object plane. The
dots are chosen so that the distribution of their projection is invariant with respect to
a 2D planar rotation.

The observation is monocular: the non-dominant eye of the participant is
masked. The participants are also fitted with sensors so the experimenter can
measure the position of their head or eye. Therefore, their motion can be used
to check whether it is not too important (if they are asked not to move) and to
change the projection of the dots of the object plane on the screen according to
their changing point of view. The stimulus is displayed for less than 1 s.

The participants are asked to judge the slant or the tilt of the plane. To do
so, after the presentation of the stimulus, they must align a probe (like a planar
grid) using an input device (a joystick for example) with the mean position of
the perceived plane.

2.2 Depth Reversal

Depth reversal is a well-known effect in 3D vision: many depth cues are ambigu-
ous as to the sign of relative depth (cf. the Necker cube). In sfm, the simplest
instance of this ambiguity is the observation of a rotating plane through a small
opening. In this case, there is ambiguity regarding the tilt and direction of ro-
tation, as illustrated in Fig. 3(b). However, it has been shown (Dijkstra et al.,
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(a)

(b) (c)

(d) (e)

Fig. 3. Some ambiguities in first-order optic flow that have been used in the studies
cited. (a) An example of an optic flow field that presents a number of ambiguities:
all configurations shown in this figure lead to this flow. (b) These two configurations,
which differ by simultaneous reversals of relative depth and 3D motion, both yield the
optic flow shown in (a). This ambiguity is called depth reversal. (c) Depth reversals
can also occur for moving observers. These two configurations have the same relative
motion between object and observer as in (b) and therefore yield the same optic flow.
However, one solution is stationary in an allocentric or observer-independent reference
frame, while the other solution undergoes a rotation in this frame, twice as fast as the
observer’s motion. (d) The same ambiguity when the observer tracks a moving surface
with the eyes. One solution undergoes a translation only, while the other undergoes
the same translation and a rotation. (e) Ambiguity between slant and rotation speed:
a larger slant coupled with a slower rotation may give the same optic flow as a lower
slant together with a faster rotation.

1995) that this ambiguity does not occur with a large field of vision. We inves-
tigate this simple effect as a first example of our model.

TheexperimentthatweuseasareferencewasdescribedbyCornilleau-Pérès et al.
(2002). In this particular experiment, the participants are asked not to move. The
optic flow is induced by the plane, in rotation around an axis in the fronto-parallel
plane.
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Cornilleau-Pérès et al. (2002) report the results in terms of the rate of tilt
reversals. A tilt reversal is defined to occur when the absolute error in the esti-
mation of the tilt angle is greater than 90◦. The reversal rate can be considered
as a measure of the ambiguity, as illustrated in Fig. 3(b). The middle column of
Table 3 presents the results of the experiment, and we observe that the reversal
rate drops from close to its maximal value (50%) in a small field of vision to
below 5% in a large field of vision.

Table 3. Influence of the size of field of vision on the reversal rate. Both the experiment
(Cornilleau-Pérès et al., 2002) and the Bayesian model exhibit smaller reversal percepts
in a large field of vision.

Condition Experiment Model
Small field 48.8% 44.6%
Large field 3.1% 3.3%

As detailed above, the Bayesian model computes the probability distribution
over the orientation Θ of the plane, given the optic flow, the field of view and the
observer’s movement (example in Fig. 4). An ambiguity in the optic flow interpre-
tation, such as the one illustrated in Fig. 3, results in a multimodal probability
distribution. To compare the reversal rate reported by Cornilleau-Pérès et al.
(2002) with the model output, we compute the sum of probabilities correspond-
ing to tilt errors greater than 90◦ (see Table 3).

This result is accounted for by the rigidity assumption. In our model, this
assumption is expressed by a probability distribution over the optic flow. The
tilt ambiguity is a consequence of the invariance of the first-order components
of optic flow (Φ1) with respect to tilt reversal; therefore, only the second-order
components can disambiguate the stimulus.

The reduction of reversal rate in a larger field is explained in the model by
the increased influence of second-order optic flow components on the speed of a
dot, which is quadratic in the size of the field of view. In contrast, the influence
of first-order optic flow is only linear. Therefore, the relative influence of second-
order versus first-order optic flow increases with the size of field. In our model,
this is expressed by a reduced uncertainty of the second-order optic flow for large
fields of view.

Qualitatively, in so far as this uncertainty is greater in small fields, the prob-
ability of depth reversal will always be higher in a small field than in a large
field. Figure 5 shows the quantitative evolution of the reversal rate in the model
as a function of this parameter.

2.3 Depth Reversal in Moving and Immobile Observers

Recently, self-motion has been shown to modify depth perception from optic flow.
This can be seen most clearly in studies that find differences in sfm performance
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Fig. 4. Examples of probability distributions on the orientation of a plane. The polar
angle is the tilt of the plane, the radius is the tangent of the slant angle, and the colour
stands for the probability, with darker colours representing higher probabilities. The
peaks represent the most likely percepts, with the integral of the probability around a
peak corresponding to the probability of the associated percept. The top panel shows
a result with a high rate of depth reversals, while the bottom result displays a low
reversal rate.

between moving and immobile observers, while keeping optic flow the same in
the two conditions. Thus, actively generated optic flow can lead to a different
perception of 3D shape than the same optic flow viewed passively by an immobile
observer.

One of the ways in which self-motion modifies sfm is by diminishing the am-
biguity that leads to depth reversals (Rogers and Rogers, 1992, Dijkstra et al.,
1995, Wexler et al., 2001a,b). An optic flow field such as the one shown in Fig.
3(a) leads, for an immobile observer, to total ambiguity between the solutions
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Fig. 5. Influence of the uncertainty of second-order optic flow on the reversal rate in
the Bayesian model. A small field of vision leads to a greater uncertainty, and hence
to more depth reversals.

shown in Fig. 3(b), and therefore a depth reversal rate of up to 50% for a
small field of view. On the other hand, for a moving observer (Fig. 3(c)), the
ambiguity is reduced in favour of the solution that is most stationary in an
observer-independent reference frame (left solution in Fig. 3(c)).

The experimental data used as a reference are taken from Van Boxtel et al.
(2003). The plane is observed in a small field of vision. There are two different
conditions corresponding to Figs 3(b) and (c): either the participant is immobile
and the plane is in rotation around the vertical axis (immobile condition), or the
participant is moving his or her head transversally, and the plane is immobile in
the allocentric reference frame (active condition).

The experimental results for both the active and immobile conditions are shown
in Fig. 6. They reveal a bimodal distribution of tilt perception when the subject
is immobile. There are two preferred responses: around 0◦, corresponding to the
simulated plane, and 180◦, corresponding to the depth-reversed plane. In the ac-
tive condition, the same optic flow is produced by the participant’s displacement
in front of an immobile plane. In this case, the depth-reversed plane is rarely re-
ported, leading to a dominant peak in the distribution around 0◦.

Figure 7 shows the results of our model in the same two situations. We no-
tice the bimodality in the immobile condition similar to the experimental re-
sults as well as the decrease of depth reversals in the active condition. In the
Bayesian model, the bimodality derives from the symmetry of first-order optic
flow mentioned above. Furthermore, the difference between active and immobile
conditions can be accounted for only by the conditional distribution on motion
in an observer-independent reference frame. This distribution is the expression
of the stationarity assumption in our model. In the immobile condition, the
simulated and depth-reversed planes have the same speed, as depicted in Fig.
3(b); only the direction of motion changes. In the active condition, however,
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Fig. 6. Distributions of error on tilt angle for both active (top) and immobile (bot-
tom) conditions, by Van Boxtel et al. (2003). The results show depth reversals in the
immobile condition and its almost complete disappearance in the active condition.

the simulated plane is stationary in an observer-independent reference frame,
whereas the depth-reversed plane has a high velocity (see Fig. 3(c)). Therefore,
the stationarity assumption, as implemented in the model, ensures that the re-
versed plane is less probable, because it corresponds to a higher velocity in an
observer-independent reference frame.

2.4 Ambiguity between Slant and Speed

The slant of a plane is difficult to extract from optic flow. Indeed, the rota-
tion around an axis lying in the fronto-parallel plane is entangled with surface
slant (the angle between the surface normal and the direction of gaze). Starting
from a given slant and motion configuration, simultaneously increasing slant and
decreasing motion leads to approximately the same optic flow.

The experimental data that we consider are taken from Domini and Caudek
(1999). The experimental conditions involve a static monocular observer. The
stimulus consists of a plane rotating along a fronto-parallel axis. The observer is
asked to make a judgement about the slant of the plane. The planes can have two
different slants and two different angular velocities. The relationship between the
chosen slants is such that the tangent of the second slant is twice that of the
first. The same holds for the velocity, where the second is twice that of the first
(see Fig. 3(e)).
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Fig. 7. Probability distributions of tilt errors in active and immobile conditions. As in
the experimental results shown in Fig. 6, the ambiguity diminishes drastically in the
active condition.

The experimental results, from Domini and Caudek (1999), are shown in Ta-
ble 4. The columns on the left show the evolution of the perception of the tangent
of the slant angle while changing the values of angular speed or the simulated
slant. These data show that the slant of the plane is hardly recovered as an
independent variable, arguing against a veridical (Euclidean, see the review by
Domini and Caudek (2003)) analysis of optic flow by human observers. More-
over, the perceived slant for small simulated slant and high angular speed is
very close to the one perceived in the case of large simulated slant at low speed.
Finally, this experiment shows that increasing the simulated slant or increasing
the angular speed yields the same increase in perceived slant (around 23% each
time).

The right columns of Table 4 show the predictions of our model in the same
experimental conditions. Our model shows the slant/speed ambiguity found in
the experimental results. In particular, the perceived slant for small slant with
high angular speed is very close to the perceived slant for large slant with low
angular speed. These results also show an increase in slant perception while
increasing either slant or speed. As in the experimental data, this increase is
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roughly the same (50 to 60%) in both conditions, although greater than in the
experimental data.

The perceived slant comes from a trade-off between our prior over the orien-
tation (tilt and slant) of the plane and the distribution over the relative motion
from the stationarity assumption (see the methods section for details).

Note that the values of perceived slant from the model are slightly smaller
than those from the experimental data, especially for a small simulated slant. We
have chosen to provide the results of our model with a unique set of parameters
for all the experiments of this section. These parameters are therefore a trade-off
between the best parameters fitting each experiment.

Table 4. Mean perceived tangent of slant as a function of simulated slant tangent
and angular speed for both the experimental data (Domini and Caudek, 1999) and the
Bayesian model. Note the growth of perceived slant with increasing angular speed and
very similar perceived slant for large simulated slant/slow rotation and small simulated
slant/fast rotation.

Experiment Model
Angular speed 0.25 0.5 0.25 0.5

Small slant (1.5) 1.13 1.29 0.66 1.00
Large slant (3) 1.28 1.71 1.00 1.64

The slant/speed ambiguity results from ambiguities in first-order optic flow.
In both situations (small slant, high speed compared to large slant, low speed)
the optic flow is the same up to the first order, as shown in Fig. 3(e) and only the
second-order optic flow could disambiguate the stimuli. These results confirm the
low weighting of second-order components of optic flow in a small field of view.
This low weighting arises from the uncertainty attached to the distribution over
the second- order optic flow.

First-order optic flow depends on a parameter called def, the product of the
tangent of the slant and angular speed (Domini and Caudek, 2003).2 Therefore,
slant and speed cannot be recovered individually from first-order optic flow.
Domini and Caudek (2003) propose a maximum-likelihood model to account for
their psychophysical results. With a small size of field, in the absence of self-
motion and translation, and disregarding second-order optic flow, the likelihood
of our Bayesian model reduces to the Gaussian P (Φ1 | Ω ∧ Θ). The norm of
the first-order optic flow in this case is

√
ω2

X + ω2
Y

√
χ2 + υ2 = |Ω| tan σ. Their

model is thus a special case of our Bayesian model.

2.5 Ambiguity of Translation in Depth

Another symmetry or ambiguity of first-order optic flow is shown in Fig. 8. A
rotation in depth generates the same (up to first-order) optic flow as a transla-
2 Projected on vertical and transversal axes, def is χωy , υωy, χωx, υωx in the equations

shown in the appendix.
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tion in depth together with a different rotation in depth, around an axis that
differs by 90◦ from the original rotation. It has been found (Wexler et al., 2001a,
Wexler, 2003) that the two solutions are perceived with different frequencies,
depending on the observer’s movement and the origin of the depth translation—
whether the observer moves towards the surface, or the surface moves towards
the observer (see Fig. 8). These results can be summarized by stating that there
is a strong bias towards perceiving the solution that minimizes motion in an
observer-independent reference frame. Thus, these results provide further sup-
port for the stationarity assumption. However, the observer’s percepts are also,
by and large, in agreement with the rigidity assumption. Therefore, they provide
a useful testing ground for our model, which incorporates both the stationarity
and rigidity assumptions.

In the psychophysical studies, two conditions were tested: in the active con-
dition, the observer moves his or her head in depth; in the immobile condition,
the observer remains still but receives the same optic flow as in a previous active
trial (Wexler et al., 2001a, Wexler, 2003).3 In the active condition, the optic flow
is generated by a plane rotating in depth at a fixed distance from the observer
(the plane’s centre therefore undergoes depth translation as well). Therefore, in
the active condition 8(d), the rigidity assumption favours the simulated plane,
while the stationarity assumption favours the alternative solution.4 In the immo-
bile condition, on the other hand, both the rigidity and stationarity assumptions
favour the simulated plane.

The experimental results are presented in Fig. 8(c′′), (d′′), and in Table 5 as
the fraction of trials in which the observers perceive the alternative, non-rigid
plane. Recall that optic flow is the same in the active and immobile conditions;
only the observer’s motion differs. Providing that only first-order optic flow
components are available, the rigidity assumption alone would predict equally
low rates for the alternative solutions in the two conditions, whereas stationarity
alone would result in a rate close to 100% in the active condition and a low rate in
the immobile condition. Second-order optic flow components, if available, would
decrease the rate for the alternative non-rigid solution.

As explained above, the discrepancy between the actual values of the experi-
mental results and the model are because of the unique parameter set used for
all six experiments. More precisely, different groups of participants already ex-
hibit differences in their results. See, for instance, Fig. 8(c′′) and the bottom-left
histogram in Fig. 10. Both correspond to the same conditions, but the results
are numerically different. Priors in our model can be adjusted to fit some results
better at the expense of other experiments.

3 Other conditions, involving conflict between the observer’s motor command and self-
motion, were also tested (Wexler, 2003) and were found to lead to different response
distributions.

4 The reason why the rigidity assumption favours the simulated plane rather than
the alternative solution is that the symmetry of Fig. 8 only holds for first-order
optic flow. Second-order terms break the symmetry and lead to non-rigidity of the
alternative solution.
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(a)

= +

(b) (b′)

(c) (c′) (c′′)

(d) (d′) (d′′)

Fig. 8. Illustration of the effect of head motion on the perception of 3D structure
(Wexler et al., 2001a, Wexler, 2003). (a) An ambiguous 2D optic flow field that can
have different 3D interpretations, discovered by J. Droulez (cf. Fig. 3(a)). The arrows
represent motions of projections of points in 3D space on the retina. It is fairly easy
to see that the 3D configuration shown in (c) will generate this flow. However, the
configuration shown in (c′) can also generate the flow in (a), and the reason for this
is shown in (b) and (b′): if the amplitudes of the translation and rotation in (c′) are
adjusted correctly, the rotation can exactly cancel the expansion flow from the depth
translation in one of two dimensions. The planes in (c) and (c′) have the same slant and
angular speed but different tilts, and they rotate about different axes. (d), (d′) Because
optic flow depends only on the relative motion between object and observer, the same
ambiguity holds for an observer moving forward and experiencing the optic flow in (a).
If the observer’s speed is equal and opposite to the translation in (c′), the stationarity
of the solutions is reversed with respect to (c) and (c′): it is now the centre of (d′)
that is stationary in space, while (d) translates at the same speed as the observer. (c′′),
(d′′) Data from Wexler (2003), showing the frequencies of the perceived solutions for
stationary (c′′) and moving (d′′) observers, with the bars on the left corresponding to
solutions (c) and (d), and the bars on the right to solutions (c′) and (d′). Although the
optic flow is the same in the two cases, perceptions of 3D structure are very different,
showing the effect of the observer’s action.
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Table 5. Rate of alternative, non-rigid responses for the ambiguous depth-translation
stimulus. Experimental results from Wexler (2003) (which do not explicitly state the
immobile results). The higher rate in the active condition than in the passive one is
because of the stationarity assumption. In the immobile condition, both the stationarity
and rigidity assumptions favour the same percept.

Condition Experiment Model
Active 54.3% 79.6%

Immobile 3.6% 17.8%

Because our model implements both the rigidity and stationarity assumptions,
they are in competition when the most rigid and most stationary objects do not
match. In this experiment, such a mismatch happens in an active condition.
The model deals with this kind of contradiction in a way similar to Bayesian
fusion (Lebeltel et al., 2004). Other instances of Bayesian fusion are exemplified
in the literature (Landy et al., 1995, Ernst and Banks, 2002). The uncertainty,
as quantified by the probability distributions, will ensure the optimal balance
between the rigidity and stationarity assumptions.

2.6 Effect of Shear on Tilt Perception

Another point that we tested with the Bayesian model is the effect of the shear
component of optic flow on sfm performance. The shear angle is the absolute
difference between the tilt angle and the direction of the frontal translation. It is
called “winding angle” by Cornilleau-Pérès et al. (2002). Psychophysical studies
have found that sfm performance in immobile human observers (namely, judge-
ment of tilt) deteriorates drastically as shear increases (Cornilleau-Pérès et al.,
2002), but that this deterioration is much less drastic in active observers gen-
erating optic flow through their own head movements (Van Boxtel et al., 2003).
Examples of minimal and maximal shear in optic flow are shown in Fig. 9. Shear
can be parameterized by the shear angle, which takes values between 0◦, corre-
sponding to no shear, and 90◦, corresponding to maximal shear.

We compare model results with experimental findings by Van Boxtel et al.
(2003). The experiment involves a monocular observer who is either immobile
or moving in a direction perpendicular to the gaze direction (active condition).
In both cases, the observer receives the same optic flow. In the active condition,
the simulated plane is stationary in an observer-independent reference frame. In
the immobile condition, the plane rotates around an axis in the fronto-parallel
plane. The observer’s task is to report the plane’s orientation by aligning a probe
so that it appears parallel to the plane.

Figure 10 shows the distribution of absolute tilt errors from the experimen-
tal results (Van Boxtel et al., 2003), in both active and immobile conditions, for
minimal and maximal shear. First, we see that mean errors increase with in-
creasing shear. However, this effect is much stronger in the immobile condition
(where response is almost at the chance level).
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Fig. 9. Illustration of shear in optic flow. Shear can be parameterized by the shear
angle, defined as 90◦ minus the absolute value of the difference between tilt and axis
angles. Configurations corresponding to two values of shear angle are shown, 0◦ (mini-
mum shear) and 90◦ (maximum). The bottom row shows the optic flow resulting from
each configuration.

Fig. 10. Tilt error for both active and immobile conditions and shear at 0◦ and 90◦,
by Van Boxtel et al. (2003). Depth reversals (much more common in the immobile
condition, see Fig. 6) were corrected by using the opposite tilt from the one reported
in calculating errors when a reversal occurred; thus, absolute tilt error runs between
0◦ and 90◦.
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Fig. 11. The effect of shear and observer motion on tilt error, as predicted by the
Bayesian model. As in the experimental results (Fig. 10), the mean tilt error is greater
for a 90◦ shear than for 0◦ shear, and this effect is greater for an immobile observer
than an active one.

Figure 11 shows the distribution of absolute tilt errors for the same conditions
as given by the model. The variation of the precision between low and high shear
is similar to the experimental results.

In the model, the main factor inducing the shear effect is the relative weights
of the rotation prior and the translation prior. For a small shear, the absolute
motion satisfying the first-order optic flow equations for a large tilt error is com-
posed of a rotation and a translation. For a high shear, a large error corresponds
to an absolute motion composed of two rotations with the same velocity. The
stationarity assumption states that both the translation and the rotation com-
ponents of the absolute motion are probably small. However, the constraint on
the translation component should be stronger than that on the rotation compo-
nent to reduce the dispersion of tilt error for small shear. The strength of the
shear effect depends on the relative strength of the stationarity constraints on
translation and rotation components.

This experiment was conducted using a small field of vision. Our model also
predicts a reduced shear effect in a large field of vision, which has actually been
found in human observers (Cornilleau-Pérès et al., 2002).
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2.7 Influence of Eye Movements on 3D Vision

Using a sinusoidally curved surface that underwent lateral translation while be-
ing pursued with the eyes by the subject, Naji and Freeman (2004) found few
depth reversals. However, when the same optic flow was presented without pur-
suit (i.e. with the translation subtracted), depth reversals were prevalent. We
simulated a very similar experiment, the only difference being that we used a
planar rather than a curved surface. Because planes can undergo depth reversals
in the same way as curved surfaces, the main effect of Naji and Freeman, or
something very close to it, can be simulated within the framework of our model.

As can be seen in Fig. 3(d) (analogous to condition C of Naji and Freeman
(2004)), depth reversals can take place in the pursuit condition. Both solutions
undergo the same translation, and one of the solutions additionally undergoes a
rotation. In the fixation condition (analogous to condition B of Naji and Freeman
(2004)), the same optic flow leads to two solutions undergoing equal and opposite
rotations, as shown in Fig. 3(b). Finally, Naji and Freeman (2004) have a third
condition (A) where the object translates as in condition C but in which the
observers were required to fixate on a stationary point rather than pursue the
object.

The rate of depth reversals is calculated from subjects’ responses in a depth-
order task. Figure 12 shows the experimental results in these three conditions.
The graphs show the estimation of the phase with respect to the amplitude of the
stimulus. The phase is the analogue of the orientation of the plane in Figs 3(d)
and (b), whereas the amplitude stands for the slant of the plane (negative slant
being a reversal). We notice that translation (A and C) allows for the disam-
biguation of the stimulus, whereas rotation exhibits a symmetric behaviour. We
notice that the perception is more precise in the pursuit condition (C) than the
immobile condition (A).

In comparison, Fig. 13 shows the results of the Bayesian model in the trans-
posed conditions. We can see that the major properties are reproduced, in par-
ticular, the broader uncertainty in condition A compared with condition C, as
well as the ambiguity in condition B.

Up to now, subjective responses have been limited to the plane orientation.
An additional element must be included in the model to account for the ‘top-
far’ responses. This decision was made using a simple Bayesian program. As
can be seen in conditions A and C in Fig. 12, the observers exhibited some
preference towards a ‘top-far’ perception. This preference is included as a prior
in the Bayesian post-processing. However, it is to be noted that observers seem
to have a preference for a ‘top-near’ perception in condition B.

The results in condition B are the same as in the immobile condition above.
The small asymmetry of both top and bottom curves comes from the second-
order optic flow that induces a reversal rate strictly less than 50%.

The difference between the model results in conditions A and C comes from the
stationarity of the reverse percepts. In condition C, the reverse percept undergoes
a greater rotation than in condition A. Therefore, the stationarity assumption
assigns a smaller probability to it, hence yielding a smaller reversal rate.
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Fig. 12. Rate of ‘top-far’ perception with respect to the strength of the stimulus
(Naji and Freeman, 2004). Condition A corresponds to a translating object without
eye pursuit, condition B to a rotating object, and condition C to a translating object
with pursuit. Conditions A and B show that translation allows for a disambiguation
contrary to passive rotation. Furthermore, a comparison of conditions A and C shows
that pursuit of the object leads to better perception.
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Fig. 13. Results from the model. As for the experimental results, conditions A and
C allow for a disambiguation of the stimulus, and condition C is less uncertain than
condition A.

3 Discussion

3.1 Probabilistic Expression of Assumptions

A Bayesian model infers the logical consequences of a given set of assumptions
with some observations. The inference can occur as soon as a joint probability
distribution is defined. Therefore, the modeller must express the assumptions in
a Bayesian way.

Each choice in a specification is an assumption. As there are multiple steps
in the specification of a joint probability distribution, there are multiple levels
of expression. The first choice is the variables and their domain. The variables
absent at this step cannot have a meaningful influence in the model. Then, the
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joint distribution is decomposed into a product of factors using conditional inde-
pendencies, which express a lack of relationship between variables and therefore
simplify the inference. The last level of expression of assumptions is in the specifi-
cation of each distribution and its parameters appearing into the decomposition.

Each choice reduces the number of degrees of freedom of the joint distribution.
The more drastic restrictions are in the choice of variables and their domains,
while the less important are in the choice of the parameters of the distributions.
Any reduction can be postponed to a later stage, but the earlier it is done, the
more the inference can take advantage of it to simplify the computations.

3.2 Choices in Our Bayesian Model

The issue of specification is therefore to express our assumptions in terms of
choice of variable, simplification of the joint distribution using conditional inde-
pendencies, and choice of parametric forms and parameters.

The first main assumption is that of rigidity, which states that the optic
flow more likely to be observed is generated by a plane in relative motion. The
parametric space of the optic flow is derived from this assumption. The optic
flow is defined by eight parameters. While sufficient for a plane, the optic flow
is, in general, more complicated. This means that other eventual components
are not relevant variables in our model, and are therefore ignored. It could be
interesting to investigate an eventual effect of these components in the human
perception of a plane. As far as the model is concerned, such investigation can
be studied with additional components in the optic flow variable. Rigidity is also
pre-eminent in the choice of the parametric form of the probability distribution
over optic flow, given relative motion, position of the plane, and the conditions
of observation. We fixed this as a Gaussian distribution. However, it would be
possible to evaluate this choice of distribution by measuring the evolution of
performance with respect to some additional noise in the stimulus and comparing
it with the predicted evolution of the model. The other main assumption of our
model is that of stationarity, which states that the motion of the plane is more
likely to be small.

The variables chosen to describe the motion are the translation and rotation
components along the three axes, according to the experiments chosen as refer-
ences. This is restrictive in the sense that it does not take into account eventual
accelerations and even more complex trajectories. Most reported studies deal
with uniform motion; however, investigation of the influence of accelerations in
the perception of structure could benefit from the model. The model can be
adapted to implement and predict the results of different hypotheses to be com-
pared with experimental results.

The parameters are the last elements of choice in the model. We obtained
the results presented above with a single set of parameters. Each experimental
result gives information on the exact effect highlighted by the experiment on
some parameters. However, each experiment has different optimal parameters;
therefore, the final set of parameters chosen results from a trade-off between all
the experiments.
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3.3 Model Results

The results of the model display some discrepancies with the results of the ex-
periments. For example, for the first experiment described, the reversal rate of
the model in a small field is 44.6% compared with 48.8% in the experiment
(Cornilleau-Pérès et al., 2002). There are two main reasons for this difference.
First, the Bayesian model is a model of an observer. It is not specifically de-
signed to reproduce mean results across observers. Nevertheless, the results of
our model are less variable than the results reported between observers (in this
case, the minimum reversal rate reported by Cornilleau-Pérès et al. (2002) is
around 38%).

As explained above, the set of parameters is the same across all the results
of our model. However, there are variations in the precise experimental con-
ditions between the different teams responsible for the measured results. For
instance, the rate of reversal measured in a small field of view for an immobile
observer by Van Boxtel et al. (2003) is 35%, compared with the 48.8% measured
by Cornilleau-Pérès et al. (2002). This can be explained by differences in the
protocols that are not taken into account as relevant variables in the Bayesian
model. Therefore, as a general rule, the parameters we chose for the Bayesian
model are a trade-off between all the results. Accordingly, the results of the
model cannot match the experimental results precisely.

The Bayesian model not only accounts for previously reported results but also
can be used to make predictions and eventually to propose new experiments. For
example, we propose the investigation of the relative influence of stationarity
and rigidity in large fields of view. In this case, in an experimental set-up similar
to that of Wexler (2003), our model predicts that rigidity will be of greater
importance in the perception of second-order optic flow through a diminution of
the standard deviations on these components.

Another prediction of the Bayesian model involves the shear effect. In our
model, this effect is accounted for by relative weight between rotation and
translation components in a small field of vision. Our model predicts a reduced
shear effect in large fields of vision, and this has been found in human observers
(Cornilleau-Pérès et al., 2002).
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A Equations of Optic Flow

Let P be the object plane, (χ, υ) its depth gradients, M̃ with coordinates (x̃, ỹ, z̃)
a point of this plane in the 3D reference frame, and M with coordinates (x, y)
its projection in the image plane. The equation of the plane is:

x̃χ + ỹυ − z̃ = 0. (10)

We have the slant of the plane σ = arctan
√

χ2 + υ2 and the tilt τ = arctan υ
χ .

Let P be the projection of a 3D point in the image.

http://emotion.inrialpes.fr/bibemotion/2004/LBDM04
http://journalofvision.org/3/5/1/
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P :

⎛

⎝
x̃
ỹ
z̃

⎞
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(

x = x̃
1−z̃

y = ỹ
1−z̃

)

. (11)

Let t = (tx, ty, tz) and ω = (ωx, ωy, ωz) be respectively the translation and
rotation vector of the object plane.

Considering the points as functions of time, we can write:

M(t) = P ◦ M̃(t). (12)

Optic flow is the displacement of the points in the image:

φ =
dM

dt
(13)

φ =
dP

dM̃
(M̃) × dM̃

dt
. (14)

dP

dM̃
is the Jacobian of P .
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ỹ
(1−z̃)2

)

(15)

The plane P undergoes translation t and rotation ω. Therefore the motion
dM̃
dt of M̃ is as follows.

dM̃

dt
= t + ω ∧ M̃

=
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⎞

⎠ ∧

⎛

⎝
x̃
ỹ

χx̃ + υỹ

⎞

⎠

dM̃

dt
=

⎛

⎝
tx + χωyx̃ + (υωy − ωz)ỹ
ty + (ωz − χωx)x̃ − υωxỹ

tz + ωxỹ − ωyx̃

⎞

⎠ (16)

Substituting 15 and 16 in equation 14, we obtain the following.

φ =
dP

dM̃
(M̃) × dM̃

dt

=

(
1

1−z̃ 0 x̃
(1−z̃)2

0 1
1−z̃

ỹ
(1−z̃)2

)

×

⎛

⎝
tx + χωyx̃ + (υωy − ωz)ỹ
ty + (ωz − χωx)x̃ − υωxỹ

tz + ωxỹ − ωyx̃

⎞

⎠

φ =

(
tx+χωy x̃+(υωy−ωz)ỹ

1−z̃ + x̃
1−z̃ × tz+ωxỹ−ωy x̃

1−z̃
ty+(ωz−χωx)x̃−υωxỹ

1−z̃ + ỹ
1−z̃ × tz+ωxỹ−ωy x̃

1−z̃

)

(17)



328 F. Colas et al.

By the definition of P (equation 11), x̃
1−z̃ = x, ỹ

1−z̃ = y and 1
1−z̃ = 1+χx+υy.

We can finally rewrite the equation 17 to obtain the equations 18 of the optic
flow of a plane, as follows.

φ =

(
tx+χωy x̃+(υωy−ωz)ỹ

1−z̃ + x̃
1−z̃ × tz+ωxỹ−ωyx̃

1−z̃
ty+(ωz−χωx)x̃−υωxỹ

1−z̃ + ỹ
1−z̃ × tz+ωxỹ−ωyx̃

1−z̃

)

φ =

⎛

⎜
⎜
⎝

tx + x [tz + χ (tx + ωy)] + y [−ωz + υ (tx + ωy)]
+x2 (χtz − ωy) + xy (υtz + ωx)

ty + x [ωz + χ (ty − ωx)] + y [tz + υ (ty − ωx)]
+xy (χtz − ωy) + y2 (υtz + ωx)

⎞

⎟
⎟
⎠

φ = φ0 + φ1.t(x, y) +t (x, y).tφ2.t(x, y) (18)

with:

φ0 =
(

tx
ty

)

φ1 =
(

tz + χ (tx + ωy) −ωz + υ (tx + ωy)
ωz + χ (ty − ωx) tz + υ (ty − ωx)

)

φ2 =
(

χtz − ωy

υtz + ωx

)
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