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Abstract—In the context of environment reconstruction for
inspection, it is important to handle sensor noise properly to avoid
distorted representations. A short survey of available sensors is
realize to help their selection based on the payload capability of
a robot. We then propose uncertainty models based on empirical
results for three models of laser rangefinders: Hokuyo URG-
04LX, UTM-30LX and the Sick LMS-151. The methodology, used
to characterize those sensors, targets more specifically different
metallic materials which often give distorted images due to
reflexion. We also evaluate the impact of sensor noise on surface
normal vector reconstruction and conclude with observations
about the impact of sunlight and reflexions.

I. INTRODUCTION

In many inspection applications, a 3D model of the en-
vironment needs to be constructed either as a final product
or as a support to other information like thickness, heat, etc.
The Magnebike is an example of a mobile robotic platform
capable of inspecting power plant facilities with focus on
the inner casing of steam chests [1]. This mobile system
has demonstrated the feasibility of environment reconstruction
in a confined space. Figure 1 shows an example of such
reconstruction using the rotating laser scanner Hokuyo URG-
04LX. Although the reconstruction is globally consistent, one
can observe systematic noisy readings in the lower part of
the 3D model. Those deformations can impact the quality of
3D registration algorithms. Noise characterization for light
and portable laser rangefinders would lead to more robust
3D mapping algorithms and better define their applicability
to structural inspection in industrial environments.

Fig. 1. Reconstruction of a rusty metallic steam chest. The color represents
incremental scan ID through time. The gray line represents the path of the
robot.

Other researchers have already evaluated and characterized
various depth sensors. Therefore, we present in the first section
a survey of those results, highlighting limitations and common
challenges. We also present a list of depth sensors that are

actually available on the market and we categorize them
into different types of mobile systems. The second section
describes our results from 3 laser rangefinders, namely the
Hokuyo URG-04LX, UTM-30LX, and the Sick LMS-151,
tested in different conditions. We conclude by proposing
specific error models aiming at reducing the impact of faulty
measurements on registration algorithms like the Iterative
Closest Point (ICP).

II. RELATED WORK

In the literature, rangefinder sensor characterizations eval-
uate depth measurement errors under the variation of one
or multiple conditions. A first group of characterizations
evaluates the depth reading with respect to the target distance,
incidence angle, brightness/reflectivity and heat level (radi-
ance). Further studies evaluate the robustness of measurement
to different ambient lights and air conditions (e.g., dust,
rain, smoke, etc.). Finally, range sensors were found to be
sensitive to their internal temperature which can evolve in
time, specially during the first hour of utilization. This type
of error can easily be in the range of centimeters [2]. The
mixed pixel problem (i.e., a single laser beam footprint can
be large enough to cover 2 objects at different depth) was first
highlighted in [3] and is still present in more recent sensors.

The most studied scanner is the Sick LMS-200, which
was first characterized in [4] and then further investigated
in [5], [6], [7], [8], and [9]. A new generation of smaller
Sick laser (LMS-100 family) was evaluated in [10]. This
new scanner was presented as a competition to the smaller
scanners proposed by Hokuyo. Evaluations for the Hokuyo
series was well investigated with the characterization of the
PBS-03JN [5], the UBG-04LX-F01 [11], the URG-04LX [7],
[2], [12], [13] and, more recently, the UTM-30LX [14], [15],
[16]. Comparisons between Sick LMS-200 and Hokuyo URG
scanners were also tackled [8], [7]. At a larger scale, Wong et
al. [17] compare 10 sensors, from the Faro Photon80 up to a
custom made stereo ring, in an underground mapping situation.
Time-of-flight cameras, from Mesa Imaging (formally Swis-
sRanger), were characterized in [18] and [19], which leaded
to calibration models. Calibration for the Velodyne was also
proposed in [20] to improve the accuracy of the scanner from
23 cm to 1.5 cm. Recently, the Kinect was used in many
robotics applications and was also characterized in [21]. Those
studies, for sensors that are not discontinued, are regrouped in
Table I to ease further consultation.

Many more rangefinder sensors exist on the market and
their selection for an inspection task can depend on different



TABLE I
RELATED STUDIES OF POPULAR RANGE SENSORS IN RELATION WITH

DIFFERENT TYPES OF EVALUATIONS

Kinect PBS UBG URG UTM LMS
200

Target

distance [21] [5] [11] [13] [2]
[7]

[15] [7] [4]

incidence angle [5] [13] [2]
[7]

[7] [4]

brightness [22] [5] [22]
[11]

[13] [2]
[7]

[7] [4]

reflectivity [5] [11] [13] [2]
[7]

[7] [4]

heat [7] [7]

Ambient

lights [2]
conditions [14] [7] [15] [14] [7]

Other

sensor attitude [2]
mixed pixel [5] [13] [15] [9] [4]
time/temp. drift [5] [11] [13] [2]

[8] [7]
[6] [8]
[7] [4]

criteria. For example, when external power is not accessible,
power consumption of the sensors becomes critical. Also, a
large maximum range of the sensor may become essential if an
environment is difficult to access, or covers a large area. Field
of view (FOV) can also impact the design of mobile inspection
tools since too narrow FOV will require extra actuation to offer
a better coverage of the environment. We propose in Fig. 2 an
overview of the market by representing 25 sensors with respect
to their maximal range versus their weight. Payload that can be
carried by a mobile platform may be a limiting factor of small
systems. This figure is intended to help in defining a first group
of sensors that a platform could carry while quickly seeing the
possible scanning range accessible to the platform. On the y-
axis, we can also divide the graph into airborne survey sensors
with more than 1 km range, terrestrial survey sensors around
100 m to 1 km, and safety/robotics sensors under 100 m.

Finally, new technologies are emerging in this growing
field. More specifically at the level of early products and
development kits, it is worth noting the TigerEye 3D Flash
LIDAR, proposed by Advanced Scientific Concepts, which can
produce a depth image with a single laser beam. The system
can read from a distance of up to 70 m with a 45 degrees
lens. Another company, Lytro, proposes a small and low cost
camera producing depth images with a single lens. They use
a device called light field to capture simultaneously multiple
focus points and reconstruct a depth field out of the image.
Hand-held 3D scanner with sub-millimeter precision also exist
for reverse engineering or culture heritage preservation as
offered by Artec 3D or Creaform, to name a few. This type
of sensor offers more precision at the expense of range.

Based on Fig. 2, we selected sensors with weight small
enough to be carried in an inspected environment while
ensuring a reasonable scanning range. We focused on time-
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Fig. 2. Classification of range sensors based on maximum range (m) and
weight (kg). Note log scale. The sensors evaluated in this paper are in bold
red. Manufacturers: Mesa Imaging (SR4000), PMD (CamCube 3.0), ASUS
(Xtion Pro), Microsoft (Kinect), Occular Robotics (RE05, RE03), Hokuyo
(UBG-04LX, URG-04LX, UTM-30LX), Sick (LMS-151, LMS-200, LMS-
511), Velodyne (HDL-64E, HDL-32E), FARO (Photon80), Leica (ScanStation
2, ASL70-HP), Riegl (VZ-400, VZ-4000), Topcon (GLS-1500), Trimble (FX
3D, CX 3D), Optec (ILRIS), and Zoller+Froehlich (Imager 5010, Imager
5006h).

of-flight and phase-shift depth sensors to ensure uniformity in
the evaluation methodology. We have investigated the UTM-
30LX and the LMS-151 to provide uncertainty models for
which no models were found in the literature. Finally, we have
also evaluated the URG-04LX with the same methodology to
compare our results with prior characterizations [2], [13], and
[7].

III. EXPERIMENTAL PROTOCOL

As opposed to most of the protocols used in formal char-
acterization, which focused on a single beam, we realized our
evaluation on full 3D scans of metallic plates. We believe
that this type of evaluation is much closer to real applications
and leads to more realistic models. We used the custom made
tilting platform, described in more details in [23], to mount the
3 different lasers and take 3D scans of different surfaces. The
surfaces have been selected to represent a subset of metallic
surfaces that could be found in the power industry installations
while covering a large spectrum of reflectance. The surfaces



measured roughly 2 m long per 1 m large and the materials
were: aluminum, metallic surface covered with paint (white
board usually used with colored markers), old steel and rusty
iron. Fig. 3 presents photographs of all plates.

We scanned those surfaces at 5 different distances, namely
0.2, 1.0, 2.0, 4.0 and 8.0 m. The theodolite TS15, from Leica
Geosystem, was used to collect ground truth distances in a
precision range of millimeters. The poses (i.e., orientations
and positions) of the scanner were determined with the same
protocol as in [23]. As for the plate poses, 6 markers were
installed on the periphery of the plates and measured with
the same theodolite. Given that we have the transformation
from the theodolite to the scanner, we can also express the
points on the plates in the reference frame of the scanner.
Using the location of those markers, the plate is divided in
4 triangles against which all points from the 3D scan of the
plate are segmented (Fig. 4 - top). With some basic geometry
concepts, the error of each beam was determined given the
triangle in which it is associated (Fig. 4 - middle). For each 3D
scan, the intensity reflected by the surface was also recorded
(Fig. 4 - bottom). Those measurements were realized indoors
for all combinations of sensors, materials and distances. The
experimental setup was repeated outdoors for the the UTM-
30LX to observe the influence of the sun on the measurements.
The illumination of the environment at the plate level was
measured with the TES 1332a Digital LUX Meter. This gave
us a total of 80 different 3D scans with an average of 30,000
points per scan.

Moreover, another set of measurements has been done to
determine the width of the laser beams. Each sensor scanning
plane was put perpendicular to a wall at 5 different distances:
1, 3, 5 and 9 m. For each distance, a picture was taken using
a camera without an infrared filter. A ruler fixed on the wall
was used to determine the beam diameter as shown in Fig. 5.

IV. RESULTS

A. Random noise

For all results reported in this subsection on noise modeling,
we removed measurements that were heavily affected by
reflection. In our data set, those points were producing errors
larger than 0.05 m. We separated the evaluation of those
spurious readings and addressed them in Section IV-D.

We first analyzed the angular uncertainty for each laser.
We used a linear regression in the form of y = ax + b to
evaluate the beam opening angle. For all fittings, the coefficient
of determination R

2 was larger than 0.95. Based on those
results, we could confirm the manufacturer specifications for
the LMS-151 with an opening angle of 0.83 deg. Hokuyo
does not provide such specifications for the URG-04LX and
the UTM-30LX. Based on our measurements, we evaluated
the angles to be respectively 0.13 deg and 0.14 deg.

For the uncertainty on depth, we used the measurement
realized over different distances and clustered them per sensor
and material as depicted in Fig. 6. For every type of material,
represented in the figure with letters, the median is marked

−0.4

−0.2

0

0.2

0.4

z 
(m

)

 

 

−0.05

0

0.05

−0.6−0.4−0.200.20.40.6

−0.4

−0.2

0

0.2

0.4

y (m)

z 
(m

)

 

 

1500

2000

2500

3000

−0.4

−0.2

0

0.2

0.4

z 
(m

)

 

 

0

1

2

3

4

Fig. 4. Example of the results based on a scan of the iron plate at
1.0 m using the UTM-30LX. Top: point segmentation based on ground truth
measurements, color representing the clusters. Middle: depth error on each
beam value (positive when too close and negative when too far from the
plane), color represents error in meter. Bottom: intensity returned for each
beam, color represents the intensity as outputted from the UTM.

(a) (b) (c)

Fig. 5. Different laser patterns at 3 m: (a) LMS-151, (b) UTM-30LX and
(c) URG-04LX.

with a point while the 68% of the measurements are con-
tained within the error bars. Although systematic noise can
be observed, especially for the URG-04LX given different
materials, we were mainly interested in the disparity of the
depth measurement error for the model. Considering that
all types of materials are equally likely to be found in the
environment, we used the mean of the distances between each
error bar as an estimate of the standard deviation (stddev). This
leads to a disparity of 0.028 m for the URG-04LX, 0.018 m
for the UTM-30LX, and 0.012 m for the LMS-151.

Combining the angular and depth uncertainty, we defined 2
types of error models for every point based on the depth re-
turned by the sensors. Both models approximate the dispersion



(a) (b) (c) (d)

Fig. 3. Plates used for the experiments: (a) Aluminum, (b) White board, (c) Steel and (d) Rusted iron.
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Fig. 6. Error in depth measurement for different types of material (A:
Aluminum, B: White board, S: Steel, and I: Iron).

using Gaussian representation with the mean being the point
read. The first model is anisotropic and is parametrized with a
vector representing the beam direction ~

b supporting the stddev
on depth �d. The stddev of the beam radius �r is supported
implicitly by any vector perpendicular to ~

b. The second model
is a further simplification using an isotropic representation
with only one stddev defined as �m = max(�d, �r). Fig.
7 presents the notation and the comparison between the two
models.

Sensor
laser
beam

Fig. 7. 2D projection of the isotropic (gray) and the anisotropic (light gray)
error model. In 3D, �m corresponds to the radius of a ball while �r is uniform
around ~b

Parameters estimated for all sensors, based on our character-
ization, are resumed in Table II. A graphical comparison of the
isotropic noise model for the 3 laser ranger finders is depicted
in Fig. 8. We added the Kinect noise model from Khoshelham
et al. [21] for comparison. One should be careful when
comparing the LMS-151 and the Kinect because the largest
uncertainty of the Kinect is mainly on depth measurements
while the LMS-151 uncertainty is mainly caused by the laser
beam opening angle. We can also observe that more precise
measurements can be obtained with the Kinect if the expected
structure is within 4 m. Otherwise, the UTM-30LX should

be used. On one side, the opening angle of the laser used
for the LMS-151 produces less precise measurements at long
range. On the other side, this opening angle coupled with its
angular resolution ensures an overlap of 50% of every beam
by the subsequent one, giving more safety insurance about
the reading. The LMS-151 also has a longer range than the
UTM-30LX.

TABLE II
UNCERTAINTY MODEL PARAMETERS FOR THE 3 LASERS STUDIED. THE

MEASURED DEPTH d IS EXPRESSED IN METERS.

Sensor Anisotropic Isotropic

URG-04LX �r = 1.3d�0.1
1000 �m = 0.028

�d = 0.028

UTM-30LX �r = 0.6d+1.48
1000 �m = 0.018

�d = 0.018

LMS-151 �r = 6.8d+0.81
1000 �m = 0.012 if d < 1.646

�d = 0.012 �m = 6.8d+0.81
1000 else

When comparing our model for the URG-04LX to other
studies, 2 main differences appear. First, we didn’t correct
the depth measurements based on a linear [13] or third
order polynomial [2] correction. Based on our measurements,
we couldn’t find a simple model that was only based on
the measured depth that could be useful in most inspected
environments. Second, our stddev is roughly ten times larger
than the ones suggested in the other studies. We argue that
formal stddev reported are under estimated mainly due to the
methodology used. The other evaluations take into consider-
ation a single beam on an optimal material (medium gray
[13] or white paper [2]), without considering the impact of
the incidence angle. When looking more carefully at a larger
range of error they reported over different incidence angles
and materials, one can easily observe variance in the order of
centimeters, which seems to be consistent with our model.

B. Sensitivity to structure extraction

In many ICP algorithms, structural information plays a
critical role in the minimization process. A typical way to
extract surface normal vectors from a point is to search for
its nearest neighbors (NN), then recenter this subset to their
mean and finally select the Eigen vector associated to the
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Fig. 8. Comparison of the isotropic error model for the 3 lasers studied compared with the error model of the Kinect from [21].

smallest Eigen value as the surface normal. On one side, the
maximal radius for which the NN search is bounded depends
on the size of the expected planar structure. The larger this
radius is, the more robust to noise the extracted planar surface
will be. On the other side, the lower bound for the NN
search radius depends of the expected noise of the sensor
used. We characterized this sensitivity to noise by extracting
surface normal for each point (all sensors, all distances and
all materials) and variated the size of the NN search radius,
r = {0.01, 0.05, 0.1, 0.2, 0.5} m.
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Fig. 9. Surface normal errors (rad) for different NN search radius for the 3
sensors studied.

Fig. 9 presents the median of the resulting surface normal
error (rad) for each sensor over the tested radius. Given that the
evaluation was done on large planar surfaces, one can observe
that the error slowly decreases with a larger radius. Also, the
error grows very quickly under 0.05 m for all sensors. Based
on those observations, we propose this value as the minimum
radius that should be used for surface extraction. Within that
lower bound, we can expect to have surface normal error
around 3.5 deg (0.06 rad) for the URG-04LX and around
1.6 deg (0.03 rad) for the UTM-30LX and the LMS-151.
Of course, those values will hold only in the case where the
density of point is high enough so the noise can be minimized.

C. Impact of sunlight

We could observe a difference between the measurements
taken indoors and outdoors. The link between the sunlight and
the difference in the reading is not that obvious. Prior eval-
uations concluded that internal temperature of the sensor can

influence greatly the reading (see Table I column: time/temp.
drift for references). The main influence might come from the
sun heating the sensors. More controlled experiments must be
conducted to confirm this hypothesis.

D. Impact of reflection and large intensity range

Reflecting surfaces like the aluminum plate poses 3 chal-
lenges. First, when the incidence angle is large, most of the
energy is not reflected back to the sensor, which can lead
to missing measurements. Based on Fig. 10 a), the URG-
04LX seems to be more sensitive to this phenomena than the
others. Second, there is also the probability that the beam gets
reflected to another surface leading to an overestimation of the
depth. On Fig. 10 c), the lower part of the plate displayed a
larger error due to the ground being reflected. We can conclude
that the LMS-151 is more prone to such reflection given that
the energy emitted by the sensor must be stronger to reach
50 m. Finally, reflective plates exhibit a larger spectrum of
reflected intensity, which seems to create systematic error
producing wave patterns. Preliminary results show that there
is a strong correlation between the error and the intensity.

V. CONCLUSION

In this paper, we proposed 2 types of model for the random
noise of the URG-04LX, the UTM-30LX and the LMS-151
scanning laser rangefinders. We believe that the methodology
used here provides more realistic models than in prior studies.
Evaluation of surface reconstruction was also tackled, leading
to the conclusion that a NN search radius should be larger
than 5 cm to overcome the noise of the sensors. We intent
to implement those models in libpointmatcher, a generic point
cloud registration library [24]. Further studies will focus on
the correlation between intensity and the depth error leading
to systematic error patterns on reflective surfaces.
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Fig. 10. Front view of the aluminum plate for different distances (from left to right: 0.2, 1.0, 2.0, 4.0 m) and for a) URG-04LX, b) UTM-30LX, and c)
LMS-151. Color represents the error on depth with black being the error mainly due to reflection.
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