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Abstract—When people communicate with robots, the most
intuitive mean is by naming the different regions in the environ-
ment. The capability that robots are able to identify different
regions highly depends on the unsupervised topological segmen-
tation results. This paper addresses the problem of segmenting a
metric map into regions. Nowadays many researches in this di-
rection develop approaches based on spectral clustering. However
there are inherent drawbacks of spectral clustering algorithms. In
this paper, we first discuss these drawbacks using several testing
results; then we propose our approach based on information
theory which uses Chow-Liu tree to segment the composed graph
according to the weight differences. The results show that our
method provides more flexible and faster results in the sense of
facilitating semantic mapping or further applications.

I. INTRODUCTION

MAPPING is a method of environment modelling,
whose outcome is a representation of the surroundings,

namely a map. Applicable maps are usually categorized into
metric maps, topological maps, hybrid maps, semantic maps
etc. Specifically, topological maps consist of nodes with edges
between the nodes. The topological mapping techniques can
be classified more precisely according to what the nodes and
edges represent. For visual navigation, usually the “nodes”
represent the waypoints the mobile robot should follow, and
the “edges” are the physical transitions between nodes. On the
other hand, for the reasoning of an environment or achieving
a semantic representation of the environment, the “nodes” can
represent functional regions, such as rooms. In this paper we
will discuss the methods of creating the topological maps
on which appear the relations between different regions. By
“topological map”, we will designate a representation of the
relations between regions, such that a “node” on the map
represents a region of traversable free space, and an “edge”
represents the linkage between two of them.

Compared to a metric map, a topological map is suitable
for a better quality of human-robot interactions. To a certain
extend, topological mapping is the way used by human brains
in everyday life. Moreover, in comparison with the metric
maps, topological maps are more compact in the sense of
storage saving and scalability. For these reasons, several works
related to semantic mapping [1] [2] or cognitive mapping
[3] used topological map as the basic representation of the
environment. In this paper we will show that our method is
able to produce a relatively stable topological segmentation of
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the map, which can be potentially used for further environment
modelling.

Several representation methods or descriptors use vision for
the topological nodes, such as fingerprint of places [4] and
adaptive color tags of places [5]. These descriptors can work
under the condition that vision approach provide nourishing
raw information from the environment. The use of laser scan
cannot provide as much direct information as vision. Therefore
several methods treat a bunch of aligned consequent 2D scans
as a subimage, then perform the image-based segmentation
based on vision techniques, such as [1] uses watershed to
segment the given metric map. There are other approaches that
directly use a part of the occupancy grid map as a submap.
This manner is considered as the most basic and efficient
representation of a node, and got widely applied, such as in [6]
[7]. As for how maps are constructed, several representation
methods can be introduced [8], e.g. Voronoi diagram [9].

In this work we use structured cells to represent the ba-
sic decomposition of the global map as a connected graph.
Generally, the basis of topological mapping is topological seg-
mentation, which itself is based on the space decomposition.
The decomposition result will directly affect the outcome of
topological mapping, since it defines the basic units that will
combine together to construct a topological region. Several
methods of space decomposition are used in the computer
vision community, such as Quadtrees, K-D trees, Octrees etc.
Considering the repeatability and extendibility, our approach
is based on the decomposition resulting from a Quadtree
structure.

Among the state-of-art works, spectral clustering [10] has
been widely used in topological mapping. [11] takes key po-
sitions during the metric mapping process, builds the adjacent
matrix based on the distances between these key positions,
then use spectral clustering to segment the graph in an online
manner. The authors of [7] used spectral clustering as an off-
line method on the global map. This work was followed by
an incremental mapping and classification method presented
in [12]. Despite the wide utilization, the spectral clustering
method requires the calculation of inverting a big matrix
(the size depends on the number of nodes in the graph),
which makes it quite expensive in computation. Besides,
Nadler et al in [13] stated that the spectral clustering has its
‘fundamental’ limitations, e.g. the scalable problem. In this
paper, we will provide an exemplar map following the idea
from Nadler, to show that the spectral clustering would not



have a rational result out. Nevertheless, as a side-contribution
to the community, we will also present an approach based on
spectral clustering in Sec. II, using a simple distance function
to construct the adjacent matrix.

Considering the drawbacks of the spectral clustering
method, we will also propose a new topological segmen-
tation method based on Shannon information theory, using
mutual information as the indicator of the relation between
two adjacent nodes. This work is stimulated by the use of
mutual information in the computer vision community, such
as [14]. To our knowledge, there are no direct references
related to topological mapping using information theory. The
most relevant work is the active search scenario introduced
by Davison [15]. Margarita et al extended his work to the
inferring of the hierarchical structure of visual maps in [16].
In this paper, we will define the mutual information used in
the decomposition space. To segment the graph-like mutual
information tree, a common approach is to use Chow-Liu tree
to build the spanning tree, since Chow and Liu showed in
their 1968 paper [17] that a full, joint probability density
function can be optimally approximated as a product of
second-order conditional and marginal distributions, which
will minimise the difference in Kullback-Leibler divergence
[18]. The segmentation of the tree can then be done by the
selection of the level to which Chow-Liu tree expands.

The techniques such as the efficient segmentation, intro-
duced by Mezaris et al in [19], can also be used in the
segmentation of a map. According to our test, it has issues
with repeatability, and is sensitive to parameter changes.
Regarding the topological segmentation problem, it may not
be an effective solution. The result will not be included here.

As an application of our approach, the following procedure
can be recommended. An global map based on occupancy grid,
which can be obtained by laser or sonar, is firstly required, .
Then the free space in the global map will be decomposed into
small cells using Quadtree structures. These small cells are
related to one another by mutual information trees. Finally, the
decomposition of the information trees will determine different
topological regions.

We would like to stress the following possible contributions
of this paper:
• It provides a simple method creating the adjacent matrix

for using spectral clustering in topological segmentation.
• Inspired by Nadler’s work [13], we point out the inherent

limitations of spectral clustering in map segmentation.
• Despite that several existing works in the computer vision

community are using mutual information to do image
segmentation and matching, we are the first to propose
a topological mapping approach based on information
theory.

As a detailed explanation of the introduction, the remainder
of this paper is organized as follows. The spectral clustering
approach and its limitations in topological mapping will be
discussed in the next section; then in Sec. III, we will explain
our representation of the map based on information theory
in detail; further on we will present different methods of

factorization and segmentation of the tree. Test results and
conclusion will be given at the end.

II. SEGMENTATION BASED ON SPECTRAL CLUSTERING
AND ITS LIMITATION

Usually, the raw maps that we achieve through SLAM
algorithm are in the form of occupancy grids. There are
commonly three states of occupancy: unknown, occupied and
free space. Getting a topological segmentation of the map
amounts to the segmentation of the free space. In order to
simplify the problem, we simulated a typical indoor map
shown in Fig. 1(a). With the purpose of getting a more
general representation, a space decomposition method is firstly
performed on the raw map. In this work we choose Quadtree
as the basic strategy of space decomposition. It requires an
input parameter to define to which maximum depth we build
the tree. The major depth means the most precise segmentation
of the map. Each cell in the decomposition result is called a
‘node’ in the remainder of this paper.

The general algorithm of spectral clustering requires the
neighbourhood graph together with the corresponding adja-
cency matrix W with n×n elements wi j, where n is the number
of nodes in the graph. For various methods in this area, a big
difference is the definition of the weight wi j between nodes. In
our work, we define the weight between two nodes as follows:

wi j =

{
lco(i, j), if i and j are adjacent
0, otherwise

(1)

where lco(i, j) is the length of the common edge between the
nodes i and j. We only consider the 1st order neighbourhoods,
i.e. the diagonal neighbours are not included. Following the
notation of Von Luxburg in [10], the algorithm of spectral
clustering is shown in Alg. 1

Algorithm 1: Spectral Clustering on Topological Segmentation

Input:
Adjacency matrix W , where wi j indicates the weight
between two nodes i and j;
The request number of clusters k
T = {T1,T2, . . .Tk} ' {1,2, . . . ,k}
Output:
The list of indices corresponding to the nodes,
Calculate the normalized graph Laplacians using1

Lsym := I−D−1/2WD−1/2 or Lrw := I−D−1W , where
D = diagd1, . . . ,dn and di = ∑

n
j=1 ωi j;

Calculate the k smallest eigenvectors u1, . . . ,uk of L2

(either Lsym or Lrw), form the matrix
U = [u1 . . .uk] ∈ Rn×k

Set Û to be U with rows re-normalized to have unit3

norm, by Ûi j =
Ui j

(∑ j Ui j)
1
2

Use k-means clustering on the rows of Û , into k clusters4

Assign label Ti to cluster j if and only if row j of Û is5

assigned to cluster j.



A. Sensitivity to k

The decomposition with different levels and results for
the topological segmentation on the simulated environment is
shown in Fig. 1(b) and Fig. 1(c). We could see from the results
that two factors will affect the results much. The first one is
the decomposition level, i.e. sometimes the shallower level
will naturally and directly divide the separated regions, such
as the dark green cluster number 6 in Fig. 1(b). The second
factor is the number of clusters. We intentionally choose 8 as
the number of clusters for the test in Fig. 1(c). A redundant
cluster (marked with dark blue) is detected without obvious
reasons.

(a) Raw map (b) Result at level 6 (c) Result at level 7

Fig. 1. Segmentation results based on spectral clustering

This can be considered as the first limitation of the spectral
clustering method, since for most applications we have neither
information on the number of regions in a global map, nor
rough ideas of the optimal size of the cells.

B. Unrepeatable results

Another result of spectral clustering is achieved by pro-
cessing the map provided by Choi et al in [7]. The result
is shown in Fig. 2. Our own result appears in Fig. 2(b). Both
results in Fig. 2(a) and 2(b) are acceptable in the general sense
of “separating rooms”. However, with the same parameters,
sometimes we can also obtain other results such in Fig. 2(c):
this segmentation somehow makes sense from the raw sensory
data aspect, but is less useful for environment modelling e.g.
semantic mapping and reasoning. These results imply the
instability of similar approaches. The reason can be partially
inferred from the essence of the spectral clustering.

(a) Choi’s result (b) Our result (c) Unstability

Fig. 2. Comparison of spectral clustering with different distance functions

C. An extreme case

Moreover, under extreme cases, the spectral clustering
cannot even rationally work. Following the point cloud ex-
ample provided in [13], we create a simulated environment

shown in Fig. 3(a). The environment is constructed by a
rectangle ‘corridor’ area and circler ‘room’. The previous
spectral clustering will achieve a result shown in 3(b), and
other spectral clustering methods with different weighting
functions provide similar results: the ‘room’ and the ’corridor’
cannot be correctly segmented. Then we increased the k,
hoping that the segmentation can randomly hit the ‘room’.
The result of k=3 is shown in Fig. 3(c). It still can not find
the rational segmentation. This phenomenon was called the
“scaling problem” of the spectral clustering in [13]. It means
that we cannot simply increase the k to approach the result
that we are looking for. In fact, there are no feasible ways to
control the segmentation result using spectral clustering.

(a) (b) Result with k=2 (c) Result with k=3

Fig. 3. Example map showing the limitation of spectral clustering

Beside the listed drawbacks, there are other issues such as
the fact that it is hard to combine several submaps in order
to form a compact union while the tree structure of each
segmented region is not clear. All in all, a more sophisticated
method is required to tackle the topological segmentation
problem. We will introduce our advanced approach in the
following section.

III. MUTUAL INFORMATION TREE AND FACTORIZATION

Regarding the segmentation of the whole graph described
in Fig. 1(a), the essence of the segmentation problem is to
cluster the cells into several groups. When we investigate the
result of the segmentation, we could also consider that one
typical cluster is formed by a few center cells surrounded by
its “supporters”, who vote for a new cluster together with the
center cells. According to the decomposition result shown in
Fig. 1(a), each cell has its direct neighbours, which can be
taken as the direct “supporters”. However, because the weights
of “supporters” are different, some weak linkages are cut off.
It leads to a natural segmentation between clusters.

Considering this mechanism, we introduce Shannon infor-
mation theory to represent the relations inside each cluster. The
‘supporting strength’ of the “supporters” is the information
entropy according to the length of the common edges between
the center cell and its direct neighbour. Using the notation of
Mackay [20], and Davison [15], the direct neighbours of a cen-
ter cell X lie within the discrete ’alphabet’ AX = {a1,a2, . . .}.
It is represented by mutually exclusive statements of the form
’x = ai’, assigned probabilities P(x = ai) which sum to one.
The probability P(x) indicates the exclusive “supporting” ratio
from a certain direct neighbour of the center cell. It means that
the bigger weight of the common edges implies a “stronger”
support.

The information entropy H(X) of this distribution is:

H(X) = E
[

log2
1

P(x)

]
= ∑

x∈Ax

P(x) log2
1

P(x)
, (2)



P(x) is the probability that the support is provided by x, such
as

P(x) =
lco.x

∑x∈Ax lco.x
(3)

where lco.x is the length of the common edge between ai and
X . Here we use shorthand P(x) for P(x = ai). H(x) is then
a measure of the average supporting strength around a center
cell X in bit units.

For two neighbour cells, the conditional probability should
also be considered. P(longerlengthX |Y ) will represent the pos-
sibility of “X getting support among the existing “supporters”
of Y . Therefore, the entropy:

H(X |Y ) = E
[

log2
1

P(x|y)

]
= ∑

x∈Ax

P(xy) log2
1

P(x|y)
, (4)

P(xy) is related to the common neighbours of X and Y .
This leads to the mutual information I(X ;Y ) as follows:

I(X ;Y ) = H(x)−H(X |Y ) (5)

Following the expression in [15], it indicates the average
expected reduction in entropy of one cell, by learning the
supporting status of one of its neighbours. Therefore, I(x,y)
indicates how much exclusive support one cell X can get,
considering its neighbour Y . When this value is big, it means
the connections between X and Y are close, in the sense that
they form a compact cluster.

We can therefore define a mutual information matrix as in
Eq. 6, where N is the total number of nodes on the map.

I =


∗ I(x1;x2) . . . I(x1;xN)

I(x2;x1) ∗ . . . I(x2;xN)
...

...
...

...
I(xN ;x1) I(xN ;x2) . . . ∗

 (6)

The matrix is symmetric and the diagonal elements are mean-
ingless while they represent the connection weight to itself.

The plot of mutual information for the simulated environ-
ment Fig. 1(a) is shown in Fig. 4(a).

(a) The plot of mutual information.
The thickness of edges represent the
magnitude of mutual information.

(b) Segmentation result at th = 2.0.

Fig. 4. The representation of the mutual information graph and the
segmentation result.

IV. TREE FACTORIZATION AND CHOW-LIU TREE

The mutual information graph we got in the previous section
is a nonspanning graph. There are cycles in the graph structure.
To generate a spanning tree from the graph, the usual way is
to use Chow-Liu tree factorization. The essence of Chow-Liu
tree is to be a Maximum Weights Spanning Tree. We build the
Chow-Liu tree by following the standard procedure, using the
mutual information as the weights of edges. The tree-building
starts from the maximum weighted edges. At each step, the
edge with the biggest weight will be added to the tree, if and
only if the edge does not form any cycles with the existing
edges. This process will stop when all the nodes are connected,
returning a fully connected Chow-Liu tree.

As for the application of Chow-Liu tree on a real dataset, the
mutual information graph is not likely to be a full connected
tree. We need to separate the unconnected sub-graphs first.
The algorithm can be stated as follows (Alg. 2):

Algorithm 2: Search all sub-graphs in the graph
Input:
The set of all the nodes in the graph: Ni = 0
Output:
Separated sets of connected nodes: Ni
while N! = φ do1

Define a random node ni ∈ N as a seed node2

Find all the nodes connected to the seed node using3

Breadth First Search, and save them as set Ni
N = N\Ni, remove the Ni subset from N4

i = i+15

For each Ni, at least one region should be kept. In other
cases, the factorization process will stop by a certain thresh-
old level, i.e. the weak links whose weights are under the
predefined threshold level will be ignored.

We build the spanning tree over the extreme case shown in
3, on which the spectral clustering fails. The segmented result
is shown in Fig. 4(b). As a natural mutual information graph,
we could see that the free space in the map is segmented into
3 parts. If we ignore the weak weighted edges under 2.0, the
result is shown in Fig. 4(b). Although it cannot give exactly
the expected segmentation, the 3-node structure is reasonable
in the sense of regional detection.

(a) mutual information graph (b) Segmentation result at th = 2.0

Fig. 5. Segmentation result on the extreme case

V. RESULTS ON METRIC MAPS

A. Functional Test
In order to test our method on a larger scale with real

data input, we carried out a test on the occupancy grid map



created in an office environment. The map covers an area of
50×18 square meters. The structure of the environment is quite
complex, including doorways, corridor and office rooms etc.
The segmentation results are shown in Fig. 6.

With a low threshold level such as 1.0, the proposed method
can get roughly the same result as the spectral clustering
based method (the one shown in Fig. 6(a)). Sometimes the
occupancy map is too big in the sense of semantic mapping,
i.e. one whole office room is too hasty for the reasoning of the
environment. Take the region number 6 (light brown) in Fig. 6
as an example: there are separated parts inside the room. How
could we do a further segmentation on that? As for spectral
clustering, Fig. 3(b) and (c) have already given the answers:
the spectral clustering doesn’t have the ability to provide the
rational segmentation the environment at a more precise level
based on the number k. This is again due to the ‘scale’ problem
which is caused by its nature. On the contrary, the proposed
method based on the mutual information graph can achieve
the result shown in Fig. 6(b).

As a matter of fact, there are small regions which can be
considered as segmentation noise in both cases. These noisy
regions can be eliminated by median filters. This assumption
can be inferred from the plot of the mutual information matrix
I, as shown in Fig. 7. To simplify the expressions, we use
the simulated map in Fig. 3 as an example. We can see that

Fig. 7. The plot of the mutual information matrix I of the map in Fig. 3.
The greater value means stronger connections between two nodes.

most of the high value sites are lying on the diagonal of the
matrix I. It indicates that most of the ‘support’ comes from
the neighbours, which fits our assumption in the definition
of the mutual information. This plot also implies the potential
“centers” of each cluster. If we accumulated the weights values
that lie in the same row or column, the result represents the
impact of a certain node when a cluster is generated around
it. For example, in the Fig. 7, we can intuitively see three
dominating “centers” in the histogram.

Combining the tree structure and the mutual information
matrix, the result from the mutual information graph can
be easily controlled by selecting different threshold levels,
since the higher threshold level will provide more regions and
the strong links will come together with high accumulated

weights. On the contrary, the result of spectral clustering
is not intuitively controllable; once the user requires more
sub-regions, the k-means clustering needs to be run since
the beginning, which requires a sequence of test-and-run
processes.

B. Computational Complexity

The time consumption of the primary steps is shown in Fig.
8. This test uses both methods -mutual information graph and

Fig. 8. A comparison of the computational complexity

spectral clustering- to segment two different maps. Because
the difference of scale, the two maps have different number
of nodes. In the procedure of both methods, the Quadtree
works as the basic space decomposition method. This part
of the process can be replaced by another decomposition
method and the time consumption is proportional to the
maximum depth of the tree with the computational complexity
of O(n+1)2), where n is the maximum depth of the tree1. This
decomposition process is not closely related to the clustering
methods, so that the calculation of the time consumption is
started after deomposition.

As for the optimization of the computational complexity,
we did some pre-processing to obtain the adjacent matrix.
We calculate all the neighbour relationships separately and
save them in an indexed table. As a result, for the mutual
information calculation in Eq. 5, the process only takes O(n)
complexity instead of O(n2) complexity (for n nodes searching
neighbours among n nodes). The result in Fig. 8 confirmed
this assumption: the second map has around 7 times more
nodes than the first map (533:83). We can see that the “MI
Graph” (short for mutual information graph) process consumes
roughly 7 times more time for the second map.

Compared to the proposed method, the spectral clustering
one is much faster when the graph is small. However, as the
matrix inversion is the major step in the calculation of the

1A typical processing time for Quadtree decomposition on a laptop with
2.5GHz CPU is around 1.4 seconds for the depth of 7.



(a) Segmentation by optimized spectral clustering (b) Segmentation by mutual information at th = 1.6. The noisy small
regions can be eliminated by median filters

Fig. 6. Segmentation of a metric map

Laplacians, which holds O(n3) complexity, the processing time
dramatically rises when it comes to the second map.

According to the result in Fig. 8, our method shows an
important timing features. The ‘lightweight’ characteristic is
helpful and efficient in the real-time mobile robot mapping
and navigation applications.

VI. CONCLUSION

In this paper, we first gave a new segmentation method
based on the widely cited spectral clustering theory. By
comparing our results with others, we showed the inevitable
drawbacks of topological segmentation methods which are
based on spectral clustering. We then proposed a segmentation
method based on information theory. This method is derived
from the mutual information graph and Chow-Liu tree factor-
ization. We stated and certified the following characteristics
of the proposed method:

1) It is fully scalable. The segmentation result can be easily
optimized by thresholding weights on local sub-graphs.

2) The segmentation results are Stable. The Chow-Liu tree
factorization is unique under the same weight function,
which avoids the randomness introduced by the k-means
clustering method used in spectral clustering.

3) It is computational cheap in large scale: we have showed
that the method can work under O(n) complexity.

The proposed method would be well employed in a number
of real use cases, such as a rescue mission for example. After
a fire, the blueprint of the building is not directly accessible
or needs time to get. The segmentation based on the metric
map would provide intuitive information to the rescuers, who
could use it as a basis to define determined regions as targets
to be assigned to the firemen.
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