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Abstract Human observers can perceive the three-
dimensional (3-D) structure of their environment using vari-
ous cues, an important one of which is optic flow. The motion
of any point’s projection on the retina depends both on the
point’s movement in space and on its distance from the eye.
Therefore, retinal motion can be used to extract the 3-D struc-
ture of the environment and the shape of objects, in a process
known as structure-from-motion (SFM). However, because
many combinations of 3-D structure and motion can lead to
the same optic flow, SFM is an ill-posed inverse problem. The
rigidity hypothesis is a constraint supposed to formally solve
the SFM problem and to account for human performance.
Recently, however, a number of psychophysical results, with
both moving and stationary human observers, have shown
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that the rigidity hypothesis alone cannot account for human
performance in SFM tasks, but no model is known to account
for the new results. Here, we construct a Bayesian model of
SFM based mainly on one new hypothesis, that of stationar-
ity, coupled with the rigidity hypothesis. The predictions of
the model, calculated using a new and powerful methodology
called Bayesian programming, account for a wide variety of
experimental findings.

1 Introduction

Relative motion between an observer and the objects in a
visual scene leads to a deformation of the image on the retina,
called optic flow. Optic flow is generated by the 3-D motion of
shapes; therefore, it contains relevant information to recover
the scene geometry. Motion parallax and the kinetic depth
effect are special cases of this phenomenon, noticed by von
Helmholtz (1867), and experimentally quantified by Wallach
and O’Connell (1953).

Although it is simple to derive the optic flow corresponding
to given 3-D geometry and motion, perception faces the
inverse problem, to derive 3-D shape and motion from optic
flow. Because an infinite number of combinations of geom-
etry and motion can lead to the same optic flow, SFM is an
ill-posed inverse problem.

Formally, the SFM problem can be solved if the rigidity
hypothesis holds, that is if optic flow is only due to 3-D
translations and rotations of a rigid body. In this case, the
number of degrees of freedom associated with motion is
drastically reduced and both structure and motion can be
theoretically recovered from very little optic flow informa-
tion (Ullman 1979). Several algorithms based on the rigidity
hypothesis for special cases, such as planes, have been devel-
oped (Mayhew and Longuet-Higgins 1982). Psychophysical
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results show that human performance on some SFM tasks is at
least broadly consistent with predictions based on the rigidity
hypothesis (Wallach and O’Connell 1953; Koenderik 1986).
However, more recent affine models are based only on local
velocity information, rather than on the entire optic flow field,
to account for human perception (Todd and Bressan 1990;
Todd and Norman 1991); then, even perception of affine
properties has been questioned (Domini and Braunstein 1998).
It has also been shown that sometimes human perception does
not abide by the rigidity hypothesis even if a rigidity inter-
pretation of a stimulus exists (Wexler et al. 2001a).

Most studies of SFM involve an immobile observer
experiencing optic flow consistent with moving 3-D objects.
However, it is known that SFM is also effective when optic
flow is generated by the observer’s own head movement
about a stationary 3-D scene (Rogers and Graham 1979).
Until recently, it has been thought that 3-D shapes perceived
in subject-motion SFM are the same as those perceived in
object-motion SFM, as long as the optic flow is the same
(Wallach et al. 1974; Rogers and Graham 1979). However,
in some cases, this turns out to be false: even when optic
flow is kept constant, the observer’s movement influences
perceived 3-D shape (Rogers and Rogers 1992; Dijkstra et
al. 1995; Wexler et al. 2001b).

This influence of self-motion on a perceived 3-D shape
lead to the postulate of a second hypothesis in the inter-
pretation of optic flow, that of stationarity: the visual sys-
tem prefers the solution whose motion is minimal in an
observer-independent, allocentric reference frame (Wexler
et al. 2001a, b; Wexler 2003). This can be supported by the
observation that most of the objects in the visual field are
static. While the rigidity hypothesis may be seen as the min-
imization of relative motion between the points of a pos-
sible object, the stationarity hypothesis is the minimization
of absolute object motion in an observer-independent refer-
ence frame. Taken separately, neither the stationarity nor the
rigidity hypothesis can explain human SFM performance.
However, until now, no coherent model has integrated these
two hypotheses.

In this article, we present a generic Bayesian model that
integrates the stationarity and rigidity hypotheses in the per-
ception of 3-D surfaces from optic flow. The aim is to build
a Bayesian model of an observer presented with uncertain
stimuli. Then, we instantiate the generic model for the per-
ception of 3-D planar surfaces. This choice is motivated by
the availability of data, as well as the complexity of analy-
sis and calculation. This model not only accounts for SFM
performance in moving and stationary observers that led to
the postulation of the stationarity hypothesis, but also for a
number of other, sometimes puzzling, results that have been
previously reported. We investigate experiments focusing on
the monocular perception of a rotating planar patch with
a neutral or non-informative texture. In these experiments,

motion was the only cue for plane orientation. However, we
look into variations in the experimental conditions involving
the motion of the observer’s head or eyes, or the plane, or
both, as well as the size of the displayed stimulus. Although
perception of planes is a special case, it is a very important
special case of spatial vision, as the visual world is com-
posed mostly of surfaces, which, if sufficiently regular, can
be locally approximated as planes.

In recent years, growing attention has been paid to
Bayesian inference as a common theoretical framework, to
understand perceptive skills and multimodal interactions
(Weiss et al. 2002; Ernst and Banks 2002; Kersten et al.
2004). In most works, however, the probabilistic reason-
ing has been limited to simplified forms of Bayes’ theorem.
One simplification is to use the linear Gaussian assumption,
which is not valid in the case of optic flow processing as the
different information sources do not combine linearly (see
Appendix A). The other simplification is to restrict Bayesian
models to a combination of prior knowledge and a set of
observations. In order to combine several hypotheses, such
as rigidity and stationarity, in a mathematically correct form,
we found it necessary to put perception models back into
a more general Bayesian framework that includes not only
observed sensory data and perceived states but also interme-
diate variables. Focusing on the SFM problem, we show here
that our general Bayesian formalism allows us to express and
to test several hypotheses originating from psychophysical
experiments, in a very natural and efficient way.

2 Methods

We first present a generic, unified model of perception of
the structure of an object from optic flow. Then, we give a
precise instantiation for the perception of planes that yields
the results presented in Sect. 3.

2.1 Generic model

The generic Bayesian model we propose is the expression of
the hypotheses evoked above. The first two are the rigidity
(H1) and stationarity (H2) hypotheses. We also assume that
the structure of the object is independent of its motion, the
motion of the observer and the conditions of observation
(H3), and that the conditions of observations are independent
of the motions of both the object and the observer (H4).

For the sake of simplicity, we have called “rigidity
hypothesis” the expression of the relationship between the
observed optic flow and the unknown 3-D object structure
and motion. In the following, we will describe the object
motion relative to the observer as any combination of 3-D
rotation and translation. Therefore, we excluded any explicit
description of object deformation in motion variable. Any
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deviation from a strictly rigid object is then entirely defined
as a mismatch between the observed optic flow and the optic
flow that can be predicted from rigid object transformation.
But, of course, there is a natural extension of the present
model with explicit non-rigid object transformation, adding
for instance the first order deformation tensor to the 3-D trans-
lation and rotation in the description of object movement.
Having restrained the object motion description to isomet-
ric transformation does not imply that the perceived move-
ment will be the rigid transformation that explains the best
the observed optic flow, since other hypotheses, and particu-
larly the stationarity hypothesis, might induce a strong devi-
ation from the best rigid solution. The stationarity hypoth-
esis is expressed in the probabilistic relationship between
the object’s movement with respect to the observer’s ref-
erence frame and the observer’s movement with respect to
the allocentric reference frame. It states that the most prob-
able relative object movement is equal and opposite to the
observer’s movement. As a consequence, the most probable
object movement in the allocentric reference frame is null. In
the following, we have not included the object movement in
the set of variables, since it can be directly reconstructed by
combining the relative object movement and the observer’s
movement. Rigidity (H1) and stationarity (H2) are the two
main hypotheses of our model. As they are expressed in prob-
abilistic forms, none of them could be simultaneously satis-
fied. The most probable output would be rather the optimal
compromise. The last two hypotheses are common assump-
tions made explicit. Indeed, H3 states that the shape of the
object does not influence a priori the motion of the observer,
nor the motion of the object itself, nor the conditions by which
the object is observed. These conditions of observation can
be the size of the image (as in the following example) or
the dots density on the object. Hypothesis H4 further adds
that the conditions of observation do not influence the object
motion and the subject motion. Both these hypotheses reflect
the experimental protocols and help reduce the complexity
of the model.

We follow the Bayesian programming methodology to
specify a model with these hypotheses (Lebeltel et al. 2004).
This model uses probabilities to represent and handle the
uncertainty faced by an observer. This is a model of what an
observer can deduce from the limited information of optic
flow.

As a summary, we have a set of hypotheses related to
the experiment and a methodology for the specification of a
Bayesian model. At each step of the methodology, we extract
the relevant knowledge from the hypotheses.

From relevant information to variables

The unified model is based on relevant variables common to
all instances of structure-from-motion perception. Additional

variables can be used to comply with specific experimental
conditions.

In this context, we propose a model that takes into account:
(i) the observed optic flow (noted !), (ii) the 3-D structure
of the object (noted Θ), (iii) the motion of the object (noted
X ) in the observer’s reference frame, (iv) the motion of the
observer in the allocentric reference frame (noted M), and (v)
the general viewing conditions as defined by the experimental
protocol (noted Λ).

Due to our rigidity hypothesis, we restrict the form of
relative motion of the object and self-motion to isometric
transformations of the 3-D space.

As this is a generic model, these are formal variables. In
the next section, presenting the instantiation of this generic
model for the case of a moving plane, these variables will be
given actual mathematical expressions.

From dependencies to decomposition

At the core of a Bayesian model lies the joint probability dis-
tribution over all its variables. This joint distribution follows
from the assumptions of a model. The structural part in the
specification of the joint distribution summarizes the depen-
dencies and independencies between the variables. This
structure is called decomposition. Bayesian programming
methodology includes making the formal simplifications of
the decomposition before actually dealing with the specifi-
cation of each factor.

The structure and relative motion of the object are
sufficient to define the optic flow of an object. Therefore, the
absolute self-motion is unnecessary for the optic flow. This
corresponds to the following mathematical simplification:

P(! | Θ M X Λ) = P(! | Θ X Λ) (1)

The stationarity hypothesis (H2) states that object motion
is most likely to be small in the allocentric reference frame.
This defines a constraint on P(X | M) (see next section);
therefore we use Bayes’ rule to write

P(M X) = P(M) P(X | M). (2)

The application of Bayes’ rule to P(M X) can lead also to
P(X) P(M | X) but the stationarity hypothesis will be a
simpler to express with Eq. 2.

Hypothesis H3 states that the structure of the object is
independent of the relative motion of the object, the self-
motion, and the conditions of observation. This translates as
a product of independent factors in the decomposition:

P(Θ M X Λ) = P(Θ) P(M X Λ). (3)

The last hypothesis (H4) states the independence between
the motions and the general viewing conditions:

P(M X Λ) = P(M X)P(Λ). (4)

123



464 Biol Cybern (2007) 97:461–477

Finally, using Bayes’ rule, we can write

P(Θ M X Λ !) = P(Θ M X Λ) P(! | Θ M X Λ). (5)

Putting together Eqs. 5, 3, 4, 2, and 1, we obtain the
decomposition, shown in Eq. 6, that is the structural expres-
sion of our hypotheses.

P(Θ M X Λ !) = P(Θ) P(Λ) P(M)

× P(X | M)

× P(! | Θ X Λ). (6)

The decomposition states the lack of relation between
some of our generic variables. In this case, the structure of
the object, the conditions of observation, and self-motion are
independent; relative motion only depends on self-motion,
due to the stationarity hypothesis; and optic flow does not
depend on self-motion, but only on relative motion, structure
of the object, and conditions of observation.

From physical and physiological laws to distributions

The decomposition only state whether there is a relation
between variables. In order to get a usable expression for
the joint distribution, these relations have to be defined. This
is done by specifying each of the probability distributions
that appear as factors of the decomposition of the joint dis-
tribution.

The first factor, P(Θ), is the prior on the structure of the
object. As we build the model of perception by an observer, it
represents what this observer expects before any observation.
It can be an uninformative prior or it can reflect some bias in
perception, in favor of more common shapes.

In the same way, P(M) and P(Λ) represent respectively
the expectation by an observer of her or his own motion,
and of the conditions of observation. If we consider that the
model has an exact knowledge of them (as will be the case
later in this article), this probability distribution is simplified
in the final inference and thus can be left unspecified.

The fourth factor P(X | M) specifies the relative motion
expected from a given self-motion. According to stationar-
ity, the object is more likely to undergo a smaller absolute
motion. Therefore, the most probable relative motion should
be defined as the opposite of self-motion. The actual para-
metrical form varies once again with the experiment, but a
general expression could be proportional to the exponential
of the opposite of kinetic energy (Gibbs distribution). In some
cases, this means a Gaussian distribution. A dirac distribu-
tion set to the opposite of self-motion would mean absolute
certainty of a non-moving object in the absolute reference
frame, and would therefore rule out any interpretation of the
stimulus involving a moving object.

The last factor in decomposition 6 is the distribution of
optic flow, given the structure of the object, the relative motion

between the object and the observer, and the conditions of
observation, P(! | Θ X Λ). The rigidity hypothesis states
that the optic flow is generated by a rigid object in motion.
Therefore, we specify this factor saying that the most prob-
able optic flow is the theoretical optic flow of the object in
this particular configuration, given this particular motion as
can be computed by standard optics calculations. It can be
interpreted as the optic flow formation process, relaxed by
a non-null probability of a different optic flow for a given
situation. A dirac distribution on the exact theoretical flow
would rule out any non-rigid interpretation of a given optic
flow.

Formalized questions

A probabilistic question is the distribution over some
variables of the model, possibly given the knowledge of the
values of other variables. With a completely specified joint
distribution, the answers to such questions can be mechani-
cally inferred with the rules of probability calculus.

The participants of the experiments have to answer a
unique value to solve the task, instead of a probability dis-
tribution. Without any cost function to specify the decision
process, we sample the distribution computed to answer the
probabilistic question. As a consequence, over repeated tri-
als, the distribution of answers of our model approaches to the
probability distribution from which they are sampled. Error
distributions can be computed directly from these distribu-
tions, without resorting to any stochastic process.

The precise question we ask to solve the SFM issue is the
probability of the object structure or shape, given the optic
flow, the self-motion, and the general conditions of observa-
tion written as P(Θ | φ m λ).1 This question is answered
by the following expression, that results from Bayes’ rule,
marginalization rule and use of the decomposition (expres-
sion 6):

P(Θ | φ m λ)

=
∑

x∈X P(Θ)P(λ)P(m)P(x | m)P(φ | Θ x λ)
P(φ m λ)

∝ P(Θ)
∑

x∈X P(x | m)P(φ | Θ x λ).

(7)

This is essentially the problem we solved to obtain the
results shown later in this article. Given observations of optic
flow and self-motion, this distribution represents knowledge
about the structure of the object (including its relative posi-
tion with respect to the observer) that one can infer from our
hypotheses. The observations do not need to be noiseless. If
the added uncertainty (for example on optic flow) is compat-
ible the probability distributions (in this case the variance on
P(! | Θ X Λ)), the model will behave essentially the same
as with clean input.

1 We use an uppercase letter for a variable and lowercase for the instan-
tiation of a variable with a particular value.
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Furthermore, the same probabilistic model can be used to
answer other questions. For example, one may be interested
in the estimation of self-motion from optic flow: P(M | φ λ).
This question can be used to study vection, where optic
flow induces the sensation of self-motion, and the direction
of perceived self-motion, called heading. For this question,
Bayesian inference with the same model gives the following
expression:

P(M | φ λ)

=
∑

x∈X,θ∈Θ P(θ)P(λ)P(M)P(x | M)P(φ | θ x λ)

P(φ λ)

∝ P(M)
∑

x∈X,θ∈Θ P(θ)P(x | M)P(φ | θ x λ).

(8)

2.2 The case of a moving dotted plane

The generic model is a template, which must be adapted to
account for particular experiments. The remainder of this
paper will focus on the perception of a moving planar object.
This allows for a simpler actual model than with other kind
of surfaces while still exhibiting interesting properties of
the ambiguity of perception. In this section, we present the
instantiated model for this particular case that we use to gen-
erate the results presented in the next section.

Variables

For this model, we need only consider instantaneous
variables, as the experiments deal with short stimuli with-
out large change during the course of its presentation. How-
ever, the model can be adapted to time-varying variables with
exactly the same instantaneous structure of dependency. The
structure Θ of the object is reduced to the position and ori-
entation of the plane. As one point of the plane is already
known (the fixation point),2 only two orientation parame-
ters are needed to parametrize the structure of the object.
For practical reasons, we use the depth gradients along the
transversal and vertical axes. If we call x , y, and z the coor-
dinates of a point of the plane along the transversal, vertical,
and sagittal axes respectively, then the structure Θ is the pair
(χ ,υ) =

(
∂z
∂x , ∂z

∂y

)
.

Self-motion M is a set of translation and rotation velocities
of the observer, chosen along the transversal, vertical, and
sagittal axes. Likewise, relative motion is decomposed into its
rotation and translation components, # and T, respectively.

In the case of planar objects, the optic flow is entirely
specified by eight components (see Appendix for details),
namely the two velocity components at the origin (!0),
the four first-order derivatives of the velocity field at the
origin (!1), and the two independent components of the

2 By convention the distance between the fixation point and the observer
is taken as the unit of distance. This way the scale issue disappears.

second-order derivatives of the velocity field at the origin
(!2) (Longuet-Higgins 1984).

Finally, we restrain the viewing condition parameters to
the most critical one, the size of the field of view.

Distributions

The prior on plane orientation P(Θ) is chosen to be the least
informative, so as not to bias the inference. This corresponds
to a prior invariant to arbitrary rotation of the plane. Oth-
ers prior can be chosen based on ecological arguments, for
example in favour of the horizontal plane. However, lacking
precise experimental data, we opted for an unbiased distrib-
ution.

For SFM question P(Θ | φ m λ), both self-motion, m, and
the size of field, λ, are known. The posterior distribution does
not depend on the priors on variables M and Λ; therefore,
these prior distributions do not need to be specified, as can
be seen in expression 7.

As for the expression of stationarity, the distribution of
relative motion given self-motion P(X | M) yields the most
probable relative motion as equal-and-opposite to self-
motion, corresponding to no absolute motion. To this end,
we choose a Gaussian distribution centered on such relative
motion. Indeed, the Gaussian is the least informative distri-
bution, given the mean and the uncertainty of the distribu-
tion. It also corresponds to the Gibbs distribution with kinetic
energy. Choosing a least informative distribution ensures that
we do not put additional constraints into the model that do
not appear in our list of hypotheses.

Likewise, the distribution of optic flow, given the relative
motion and orientation of the plane and the size of the field of
view, is an expression of the rigidity hypothesis. We chose a
Gaussian distribution centered on the theoretical values of the
eight components (see expression in Appendix A). The field
of view is assumed to change the variance of the second-order
components (!2). Indeed, in a smaller field of view, second-
order components are much more difficult to extract than in
large field of view compared to first-order components.

Implementation

Although the specified distributions are either Gaussian or
uniform, the SFM question has no analytical solution because
of the intrinsic nonlinearities of the optic flow equations
(see Appendix). Quantitative simulations are then performed
by computing the exact inference on discretized variables.
Table 1 gives the details of the domains of the variables.
ranges (minimum, maximum and number of samples in
between) and dimensionality of each component of Θ (top
row), of the relative rotation (second row), of the relative
translation (third row), and of the size of the field of view
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Table 1 Domain (minimum, maximum and number of samples in between) and dimensionality of each component of Θ (top row), of the relative
rotation (second row), of the relative translation (third row), and of the size of the field of view (bottom row)

Variable Symbol Minimum value Maximum value Number of values by dimension Dimension

Depth gradient Θ −4.125 4.125 33 2

Angular velocity Ω −1.375 rad s−1 1.375 rad s−1 11 3

Linear velocity T −1.375 m s−1 1.375 m s−1 11 3

Size of field Λ 0.015 sr 1.05 sr 2 1

Table 2 Covariance matrices of each factor of the joint distribution

Distribution parameters

σT = 0.3 ∗ I d3×3 in m s−1

σΩ = 1.2 ∗ I d3×3 in rad s−1

σΦ0 = 1.0 ∗ I d2×2 in m s−1

σΦ1 = 0.025 ∗ I d4×4 in s−1

σΦ2 | λ=SF = 5.0 ∗ I d2×2 in m−1 s−1

σΦ2 | λ=L F = 0.2 ∗ I d2×2 in m−1 s−1

From top to bottom distribution over the relative translation, relative
rotation, order 0 optic flow, order 1 optic flow, order 2 optic flow in a
small field of view and order 2 optic flow in a large field of view

(bottom row). Other variables do not need to be discretized
as their values are known for the inference.

On the other hand, some of the distributions in our
decomposition involve parameters. This is the case with the
Gaussians on relative motion and optic flow, whose parame-
ters are shown in Table 2. We use a single set of parameters
for all the results of the following section. Each covariance
matrix was determined accordingly to reasonable values for
all the experiments then fitted one by one with a local search
against global results. Therefore the parameters are a trade-
off between the different experiments. The calculations are
led using the ProBT inference engine (Lebeltel et al. 2004).

3 Results

There are numerous sources of ambiguity in the perception
of optic flow. Figures 1 and 6 show five kinds of situa-
tions of motion of the object or the observer that generate
approximately the same optic flow. They have been stud-
ied in detail by six sets of psychophysics experiments previ-
ously reported. We show that the Bayesian model compares
to human performance in various conditions of motion of the
plane, voluntary motion of the observer, and size of field of
view.

3.1 Depth reversal

Depth reversal is a well-known effect in monocular vision:
many depth cues are ambiguous about the sign of relative

depth (cf. the Necker cube). In SFM the simplest instance of
this ambiguity is the observation of a rotating plane through
a small opening. In this case, there is an ambiguity on the
tilt and direction of rotation, as illustrated in Fig. 1b. The
extrinsic orientation of a plane in 3-D space is often para-
metrized by two angles; slant and tilt. Slant is the angle, in

Fig. 1 Some ambiguities in first-order optic flow that have been used
in the studies cited. a An example of an optic flow field that presents
a number of ambiguities: all configurations shown in this figure lead
to this flow. b The two configurations, which differ by simultaneous
reversals of relative depth and 3-D motion, both yield the optic flow
shown in a. This ambiguity is called depth reversal. c Depth reversals
can also occur for moving observers. The two configurations have the
same relative motion between object and observer as in b, and there-
fore yield the same optic flow. However, one solution is stationary in
an allocentric or observer-independent reference frame, while the other
solution undergoes a rotation in this frame, twice as fast as the observer’s
motion. d The same ambiguity when the observer tracks a moving sur-
face with the eyes. One solution undergoes a translation only, while the
other undergoes the same translation but also a rotation. e Ambiguity
between slant and rotation speed: a larger slant coupled with a slower
rotation speed may give the same optic flow as a lower slant together
with a faster rotation
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Table 3 Influence of the size of field of view on reversal rate

Condition Experiment Model

Small field 48.8% 44.6%

Large field 3.1% 3.3%

Both the experiments (Cornilleau-Pérès et al. 2002) and the Bayesian
model exhibit less reversal percept in a large field of view

3-D space, between the plane’s normal vector and the normal
of the fronto-parallel plane. Tilt is the angle, in the fronto-
parallel plane, of the projection of the plane’s normal. In this
case, a depth reversal is characterized by the perception of
tilt and rotation of the plane in the opposite direction at the
same time (see Fig. 1b). However, it has been shown that this
ambiguity does not hold for a large field of view (Dijkstra
et al. 1995). We will investigate this simple effect as the first
example of our model.

The experiment we use as a reference has been described
by Cornilleau-Pérès et al. (2002). In this experiment, the sta-
tionary participant observes a planar patch in rotation about
a fronto-parallel axis (the plane is painted with a uniform
random dot texture). After the presentation of the stimulus,
the observer is asked to estimate the orientation of the planar
patch by aligning a probe to it. Two field-of-view sizes were
compared: a large field with a 60◦ aperture angle and a small
field with an 8◦ aperture angle.

Cornilleau-Pérès et al. (2002) report the results in terms of
the rate of tilt reversals. A tilt reversal is defined to occur when
absolute error in the estimation of the tilt angle is greater
than 90◦. The reversal rate can be considered a measure of
the ambiguity, as illustrated in Fig. 1b. The middle column
of Table 3 presents the results of the experiment, and we
observe that the reversal rate drops from close to its maximal
value (50%) in small field of view to below 5% in large field
of view.

Our Bayesian model computes the probability distribution
over the orientation Θ of the plane, given the optic flow,
the field of view and the observer’s movement (example
in Fig. 2). Ambiguity in the optic flow interpretation, such
as illustrated in Fig. 1, results in a multimodal probabil-
ity distribution. To compare the reversal rate reported by
Cornilleau-Pérès et al. (2002) with model output, we com-
puted the sum of probabilities corresponding to tilt errors
greater than 90◦ (see Table 3).

This result is accounted for by the rigidity hypothesis.
In our model, this hypothesis is expressed by a probability
distribution over the optic flow (see Sect. 2 for details). The
tilt ambiguity is a consequence of the invariance of the first-
order components of the optic flow (!1) with respect to tilt
reversal; therefore only the second-order components can
disambiguate the stimulus.

In the Bayesian model, the standard deviation over the
second-order optic flow is smaller in a large field than in a

Fig. 2 Examples of probability distributions on the orientation of a
plane. The polar angle is the tilt of the plane, the radius is the tangent of
the slant angle, and the color stands for the probability. A darker color
represents a higher probability. The peaks represent the most likely per-
cepts, with the integral of the probability around a peak corresponding
to the probability of the associated percept. The top panel shows a result
with a high rate of depth reversals and the lower panel displays a low
reversal rate

small field of view. Therefore the influence of second-order
optic flow is greater in a large field of view than in a small
field.

Qualitatively, insofar as this uncertainty is greater in a
small field, the probability of reversal will always be higher
in a small field than in a large field. Figure 3 shows the quanti-
tative evolution of the reversal rate in the model as a function
of this parameter.
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Fig. 3 Influence of the uncertainty of second-order optic flow on the
prediction of reversal rate in the Bayesian model. A small field of view
leads to a greater uncertainty, and hence to more reversals

3.2 Depth reversals in moving and immobile observers

Self-motion has been shown to modify depth perception from
optic flow. This can be seen most clearly in studies that find
differences in SFM performance in moving and immobile
observers, while keeping optic flow the same in the two self-
motion conditions. Thus, actively generated optic flow can
lead to a different perception of 3-D shape than the same
optic flow viewed passively by an immobile observer.

One of the ways in which self-motion modifies SFM is
by diminishing the ambiguity that leads to depth reversals
(Rogers and Rogers 1992; Dijkstra et al. 1995; Wexler et al.
2001a, b). An optic flow field such as the one shown in Fig. 1a
leads, in the immobile observer, to total ambiguity between
the solutions shown in Fig. 1b, and therefore a depth reversal
rate of up to 50% for a small field of view. In the moving
observer (Fig. 1c), on the other hand, the ambiguity is lifted
in favor of the solution that is most stationary in an observer-
independent reference frame (the left solution in Fig. 1c).

The experimental data used as a reference is taken from
van Boxtel et al. (2003), in which the perception of the same
optic flow is compared in active and immobile conditions
(Fig. 4), in a small field of view. The experimental results
clearly reveal a bimodal distribution of tilt perception when
the subject is immobile. There are two preferred responses
around 0◦, corresponding to the simulated plane, and 180◦,
corresponding to the depth-reversed plane. In the active con-
dition, the same optic flow is produced by the subject’s dis-
placement in front of an immobile plane. In this case, the
depth-reversed plane is rarely reported, leading to a domi-
nant peak in the distribution around 0◦.

Figure 5 shows the results of our model in the same two
conditions. They were computed in a similar way than in
the previous experiment: we applied a variable change to the
posterior distribution on structure computed by our model in
order to compute the posterior probability distribution over
tilt errors. We notice that the bimodality in the immobile

−180° −90° 0° 90° 180°

−180° −90° 0° 90° 180°

Fig. 4 Distributions of error in tilt angle for both active (top) and
immobile (bottom) conditions, by van Boxtel et al. (2003). The results
show depth reversals in the immobile condition and its almost complete
disappearance in the active condition
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Fig. 5 Probability distributions of tilt errors in active and immobile
conditions. As in the experimental results shown in Fig. 4, the ambiguity
drastically diminishes in the active condition

condition is similar to the experimental results, and the
decrease of reversals in the active condition. In the Bayesian
model, the bimodality shown above is derived from the sym-
metry of the first-order optic flow mentioned above. Further-
more, the difference between active and immobile conditions
can be accounted for only by the conditional distribution
on motion in an observer-independent reference frame. This
distribution is the expression of the stationarity hypothesis
in our model. In the immobile condition, the simulated and
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depth-reversed planes have the same speed, as depicted in
Fig. 1b; only the direction of motion changes. In the active
condition, however, the simulated plane is stationary in an
observer-independent reference frame, whereas the depth-
reversed plane has high velocity Fig. 1c. Therefore, the sta-
tionarity hypothesis, as implemented in the model, insures
that the reversed plane is less probable, because it corre-
sponds to a higher velocity in an observer-independent ref-
erence frame.

3.3 Ambiguity between slant and speed

The slant of a plane (the angle between the normal of the
surface and the direction of gaze) is difficult to extract from
optic flow. Indeed, the rotation around an axis lying in the
fronto-parallel plane is entangled with surface slant. Starting
from a given slant and motion configuration, simultaneously
increasing slant and decreasing motion leads to approxi-
mately the same optic flow.

The experimental data we consider are taken from Domini
and Caudek (1999). The experimental conditions involve a
static monocular observer in a small field of view. The stim-
ulus consists of a plane rotating along a fronto-parallel axis.
The observer is asked to make a judgement about the slant
of the plane. The planes can have two different slants and
two different angular velocities. The relationship between
the chosen slants is such that the tangent of the second slant
is twice that of the first. The same holds for velocity, where
the second is twice that of the first.

The experimental results, by Domini and Caudek (1999),
are shown in Table 4. The columns on the left show the evo-
lution of the perception of the tangent of the slant angle while
changing the values of angular speed or the simulated slant.
These data show that the slant of the plane is hardly recov-
ered as an independent variable, arguing against a veridical
(Euclidean, review by Domini and Caudek 2003) analysis
of optic flow by human observers. Moreover, the perceived
slant for small simulated slant and high angular speed is very
close to the one perceived in the case of large simulated slant
and low speed. Finally, this experiment shows that increasing
the simulated slant or increasing the angular speed yields the
same increase in perceived slant (around 23% each time).

The right columns of Table 4 show the predictions of our
model in the same experimental conditions. As before, these
were computed by a variable change on the posterior distri-
bution of the model to compute the posterior distribution on
the tangent of the slant angle. Then we computed the mean
of this new distribution, like in the experimental results. Our
model shows the slant/speed ambiguity found in the exper-
imental results. In particular, the perceived slant for small
slant with high angular speed is very close to the perceived
slant for large slant with low angular speed. These results also
show an increase in slant perception with increasing slant or

Table 4 Mean perceived tangent of slant as a function of simulated
slant tangent and angular speed for the experimental data (Domini and
Caudek 1999) and the Bayesian model

Experiment Model

Angular speed 0.25 0.5 0.25 0.5

Small slant (1.5) 1.13 1.29 0.66 1.00

Large slant (3) 1.28 1.71 1.00 1.64

Note the growth of perceived slant with increasing angular speed, and
very similar perceived slant for large simulated slant/slow rotation and
small simulated slant/fast rotation

speed. As in the experimental data, this increase is roughly
the same (50–60%) in both conditions, although greater than
in the experimental data.

The perceived slant comes from a trade-off between our
prior over the orientation (tilt and slant) of the plane and
the distribution over the relative motion from the stationarity
hypothesis (see Sect. 2 for details).

It is noted that the values of perceived slant for the model
are smaller than those of the experimental data, especially
for a small simulated slant. We have chosen to provide the
results of our model with a unique set of parameters for all the
experiments of this section. These parameters are, therefore,
a trade-off between the best parameters fitting each experi-
ment.3

The slant/speed ambiguity results from ambiguities in
first-order optic flow. Indeed, in both situations (small slant,
high speed compared to large slant, low speed) the optic flow
is the same up to the order one as shown in Fig. 1d, and only
the second-order optic flow could disambiguate the stimulus.
These results confirm the low weighing of the second-order
components of optic flow in a small field of view. This low
weighing is due to the uncertainty attached to the distribution
over the second-order optic flow.

First-order optic flow can be partially described by a
parameter called def, the product of the tangent of the slant
and angular speed (Domini and Caudek 2003).4 Therefore
slant and speed cannot be recovered individually from first-
order optic flow. Domini and Caudek (2003) propose a
maximum-likelihood model to account for their psychophys-
ical results. With a small size of field, in the absence of self-
motion and translation, and disregarding second-order optic
flow, the likelihood of our Bayesian model reduces to the
Gaussian P(!1 | # Θ). The norm of first-order optic flow in

this case is
√

ω2
X + ω2

Y

√
χ2 + υ2 = |#| tan σ . Their model

is thus a special case of our Bayesian model.

3 One possible influence for this difference is the size of the field of
view, which is larger in this experiment than for the others.
4 Projected on vertical and transversal axes, def is χωy , υωy , χωx ,
υωx in the equations shown in the Appendix.
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Fig. 6 Illustration of the effect of head motion on the perception of
3-D structures (Wexler et al. 2001a; Wexler 2003). a An ambiguous
2-D optic flow field that can have different 3-D interpretations, discov-
ered by J. Droulez (cf. Fig. 1a). The arrows represent the motion of
projections of points in 3-D space on the retina. It is fairly easy to see
that the 3-D configuration shown in c will generate this flow. However,
the configuration shown in c′ can also generate the flow in a, and the
reason for this is shown in b and b′: if the amplitudes of the translation
and rotation in c′ are adjusted correctly, the rotation can exactly cancel
the expansion flow from the depth translation in one of two dimensions.
The planes in c and c′ have the same slant and angular speed, but dif-
ferent tilts and they rotate about different axes. d, d′ Because optic flow
depends only on the relative motion between object and observer, the

same ambiguity holds for an observer moving forward and experiencing
the optic flow in a. If the observer’s speed is equal-and-opposite to the
translation in c′, the stationarity of the solutions is reversed with respect
to c and c′: it is now the center of d′ that is stationary in space, while
d translates at the same speed as the observer. c′′, d′′ Data by Wexler
(2003) show, respectively, the frequencies of the absolute value of the
difference between perceived orientation and orientation of solution c
and d for stationary (c′′) and moving (d′′) observers. The bars on the
left correspond respectively to solutions c and d, and the bars on the
right to solutions c′ and d′. Although optic flow is the same in the two
cases, perceptions of 3-D structure are very different, showing the effect
of the observer’s action

3.4 Ambiguity of translation in depth

Another symmetry or ambiguity of first-order optic flow is
shown in Fig. 6. A rotation in depth generates the same (first-
order) optic flow as a translation in depth together with a

different rotation in depth, around an axis that differs by 90◦

from the original rotation. It has been found (Wexler et al.
2001a; Wexler 2003) that the two solutions are perceived with
different frequencies, depending on the observer’s movement
and the origin of depth translation, that is, if the observer
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moves toward the surface, or if the surface moves toward
the observer (see Fig. 6). These results can be summarized
by stating that there is a strong bias toward perceiving the
solution that minimizes motion in an observer-independent
reference frame. Thus, these results provide further support
for the stationarity hypothesis. However, the observer’s per-
cepts are also, by and large, in agreement with the rigidity
hypothesis. Therefore, they provide a useful testing ground
for our model, which incorporates both the stationarity and
rigidity hypotheses.

In the psychophysical studies, two conditions are tested: in
the active condition, the observer moves his head in depth; in
the immobile condition, the observer remains still but experi-
ences the same optic flow as in a previous active trial (Wexler
et al. 2001a; Wexler 2003).5 In the active condition, the optic
flow is generated by a plane rotating in depth, where the dis-
tance to the observer is fixed (the plane’s center therefore
undergoes depth translation as well). Therefore, in the active
condition Fig. 6d, the rigidity hypothesis favours the sim-
ulated plane, while the stationarity hypothesis favours the
alternative solution.6 In the immobile condition, on the other
hand, both the rigidity and stationarity hypotheses favour the
simulated plane.

Both experimental results and model results are presented
Fig. 7. Recall that optic flow is the same in the active and
immobile conditions; only the observers’ motion differs. Pro-
viding that only first-order optic flow components are avail-
able, the rigidity hypothesis alone would predict equally low
rates for the alternative solution in the two conditions,
whereas stationarity alone would result in a rate close to
100% in the active condition and a low rate in the immobile
condition. Second-order optic flow components, if available,
would decrease the rate for the alternative non-rigid solution.

As explained above, the discrepancy between the actual
values of the experimental results and the model are due to
the unique parameter set used for all six experiments. More
precisely, different groups of participants already exhibit dif-
ferences in their results. Compare, for instance, the top left
histogram in Fig. 7 with the bottom left histogram in Fig. 9.
Both correspond to the same conditions but the results are
numerically different. Priors in our model can be adjusted to
better fit some results at the expense of other experiments.

5 Other conditions, involving conflict between the observer’s motor
command and self-motion, were also tested (Wexler 2003), and found
to lead to different response distributions. More precisely, when there is
a mismatch between motor command and self-motion, the performance
of the observers are similar to involuntary motion and significantly dif-
ferent from voluntary motion accurately performed. The model would
need an additional variable to tackle this mismatch condition.
6 The reason why the rigidity hypothesis favours the simulated plane
rather than the alternative solution is that the symmetry of Fig. 6 only
holds for first-order optic flow. The second-order terms break the sym-
metry, and lead to non-rigidity of the alternative solution.
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Fig. 7 Distributions of the absolute value of the difference between
perceived orientation and rigid solution. The left column shows the
experimental results by Wexler (2003) and the right column shows the
results from our model, computed by variable change on the posterior
distribution. The top row shows results for immobile observers and
the bottom row shows results for active observers. These results show
that both for the experimental results and the model, perception for
an immobile observer will favors rigid and stationary solutions (left
bars). In active conditions both results show a higher probability of
perception of non-rigid and stationary solutions (right bars). Note that
the preference for stationarity of the model is more intense than in the
experimental results. This is due to the trade-offs in the choice of a
common parameter set for all the experiments

Because our model implements both the rigidity and
stationarity hypotheses, they are in competition when the
most rigid and most stationary objects do not match. In this
experiment, such a mismatch happens in the active condi-
tion. Wexler et al. (2001a) define a rigidity measure and use
its symmetry to account for non-rigid responses. This model
only relies on a sensible rigidity measure which can be the
probability as in the present paper. In our model, we can
additionally deal with this kind of contradiction in a way that
is similar to Bayesian fusion (Lebeltel et al. 2004). Other
instances of Bayesian fusion are exemplified in the literature
(Landy et al. 1995; Ernst and Banks 2002). The uncertainty,
as quantified by the probability distributions, will ensure
the balance between the rigidity and stationarity hypotheses.
More precisely, both rigidity and stationarity hypotheses are
simultaneously maximized by the maximization of the prod-
uct of the probability distributions reflecting each of those
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Fig. 8 Illustration of shear in optic flow. Shear can be parametrized by
the shear angle, defined as 90◦ minus the absolute value of the difference
between tilt and axis angles. Configurations corresponding to two values
of shear angle are shown; 0◦ (minimum shear) and 90◦ (maximum). The
bottom row shows the optic flow resulting from each configuration

hypotheses, that is P(! | Θ X Λ) for rigidity and P(X | M)

for stationarity.

3.5 The effect of shear on SFM

Another point we tested with the Bayesian model is the
effect of the shear component of optic flow on SFM perfor-
mance. The shear angle is the absolute difference between
the tilt angle and the direction of the frontal translation. It
is called “winding angle” by Cornilleau-Pérès et al. (2002).
Psychophysical studies have found that SFM performance
in immobile human observers (namely, judgement of tilt)
deteriorates drastically as shear increases (Cornilleau-Pérès
et al. 2002), but that this deterioration is much less drastic
in active observers generating optic flow through their own
head movements (van Boxtel et al. 2003). Examples of min-
imal and maximal shear in optic flow are shown in Fig. 8.
Shear can be parametrized by the shear angle (which takes
values between 0◦, corresponding to no shear, and 90◦, cor-
responding to maximal shear).

We compared model results to experimental findings by
van Boxtel et al. (2003). The experiment involves a monoc-
ular observer who is either immobile, or moving in a direc-
tion perpendicular to direction gaze (active condition). In the
two conditions, the observer receives the same optic flow. In
the active condition, the simulated plane is stationary in an
observer-independent reference frame. In the immobile con-
dition, the plane rotates about an axis in the fronto-parallel
plane. The observer’s task is to report the plane’s orientation
by aligning a probe so that it appears parallel to the plane.

Figure 9 shows the distribution of absolute tilt errors from
the experimental results (van Boxtel et al. 2003), in both
active and immobile conditions, for minimal and maximal

Fig. 9 Tilt error for both active and immobile conditions and shear
0◦ and 90◦, by van Boxtel et al. (2003). Tilt reversals (much more
common in the immobile condition, see Fig. 4) were corrected by using
the opposite tilt from the one reported in calculating errors, when an
reversal occurred; thus, absolute tilt error runs between 0◦ and 90◦

shear. We can see that mean errors increase with increasing
shear. However, this effect is much stronger in the immo-
bile condition (where response is almost at chance level for
highest shear) than in the active condition.

Figure 10 shows the distribution of absolute tilt errors
for the same conditions as given by the model. As usual,
these were computed with a variable change from the poste-
rior distribution computed by our model to the distributions
on absolute tilt errors shown. The variation of the precision
between low and high shear is similar to the experimental
results.

In the model, the main factor inducing the shear effect is
the relative strength of the rotation prior and the translation
prior. Indeed, for a small shear, the absolute motion that sat-
isfies the first-order optic flow equations for a large tilt error
is composed of a rotation and a translation. For a high shear,
a large error corresponds to an absolute motion composed of
two rotations with the same velocity. The stationarity hypoth-
esis states that both the translation and the rotation compo-
nents of the absolute motion are probably small. Therefore
solutions corresponding to large error will have their prob-
ability reduced by the probability of the object enduring a
given rotation and translation, or two rotations for respec-
tively a small or a large shear. If the strength (or, more pre-
cisely, the inverse variance of the Gaussian distribution) of
the constraint on the translation components is higher than
on the rotation components, the probability of a experiencing
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Fig. 10 The effect of shear and observer motion on tilt error, as pre-
dicted by the Bayesian model. As in the experimental results (Fig. 9),
the mean tilt error is greater for a 90◦ shear than for 0◦ and this effect
is greater for an immobile observer than an active one

large errors on tilt will be smaller for a small shear than for a
large shear. That is the condition, in the model, to reproduce
the shear effect. The strength of this effect depends on the
relative strength of the constraints on translation and rotation
components: the larger the difference between variance on
rotation and on translation, the clearer the effect of the shear
on the dispersion of tilt angle perception.

3.6 Influence of eye movements on 3-D vision

Using a sinusoidally curved surface that underwent lateral
translation while being pursued with the eyes by the sub-
ject, Naji and Freeman (2004) found few depth reversals.
However, when the same optic flow was presented without
pursuit (i.e., with the translation subtracted), depth reversals
were prevalent. We simulated a very similar experiment, with
the only difference being that we used a planar rather than a
curved surface. Because planes can undergo depth reversals
in the same way as curved surfaces, the main effect found by
Naji and Freeman, or something very close it, can be simu-
lated within the framework of our model.

As can be seen in Fig. 1d (analogous to condition C by Naji
and Freeman 2004), depth reversals can take place in the pur-
suit condition. Both solutions undergo the same translation,
and one of the solutions additionally undergoes a rotation.
In the fixation condition (analogous to condition B by Naji
and Freeman 2004), the same optic flow leads to two solu-
tions undergoing equal-and-opposite rotations, as shown in
Fig. 1b. Finally, Naji and Freeman (2004) have a third condi-
tion (A) where the object translates as in condition C, but in

which the observers were required to fixate on a stationary
point rather than pursue the object.

The rate of depth reversals is calculated from subjects’
responses in a depth-order task. Figure 11 shows the exper-
imental results of these three conditions. The graphs show
the breakdown of the estimation of the phase of the sinu-
soidal shape (either ‘top-far’ or ‘top-near’) with respect to
the amplitude of the stimulus. The phase is the analog of the
orientation of the plane in Figs. 1b, d, whereas the ampli-
tude stands for the slant of the plane (negative slant being a
reversal). We notice that translation (A and C) allows for the
disambiguation of the stimulus, whereas rotation exhibits a
symmetric behavior. We notice that the perception is more
precise in the pursuit condition (C) than the immobile con-
dition (A).

In comparison, Fig. 12 shows the results of the Bayesian
model in the transposed conditions. We can see the major
properties are reproduced, in particular the broader uncer-
tainty in condition A compared to condition C, as well as the
ambiguity in condition B.

Until now for the model, subjective responses were
evaluations of the values of plane orientation which can be
computed directly from the posterior distribution on struc-
ture. For this experiment, an additional element has to be
included in the model in order to account for the ‘top-far’
responses. This was done as a post-processing of the poste-
rior distribution using a simple Bayesian program. As can be
seen in conditions A and C in Fig. 11, the observers exhibited
some preference toward a ‘top-far’ perception. This prefer-
ence is included as a prior in the Bayesian post-processing.
However, it is to be noted that observers seem to have a pref-
erence for a ‘top-near’ perception in condition B.

The results in condition B are the same as those in the
immobile condition above. The small asymmetry of both top
and bottom curves comes from the second-order optic flow
that induces a reversal rate strictly less than 50%.

The difference between the model results in conditions A
and C comes from the stationarity of the reverse percepts.
In condition C, the reverse percept undergoes a greater rota-
tion than in condition A. Therefore, the stationarity hypoth-
esis assigns it a smaller probability, hence yielding a smaller
reversal rate.

4 Discussion

4.1 Probabilistic expression of assumptions

A Bayesian model infers the logical consequences of a given
set of assumptions with some observations. The inference
can occur as soon as a joint probability distribution is defined.
Therefore, the modeler has to express the assumptions in a
Bayesian way.
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Fig. 11 Rate of ‘top-far’ perception with respect to the strength of the
stimulus (Naji and Freeman 2004). Condition A corresponds to a trans-
lating object without eye pursuit; condition B to a rotating object and
condition C to a translating object with pursuit. Conditions A and B

show that translation allows for a disambiguation, contrary to passive
rotation. Furthermore, the comparison of conditions A and C shows
that pursuit of the object leads to better perception

Fig. 12 Results from the
model. As for the experimental
results, conditions A and C
allow for disambiguation of the
stimulus, and condition C is less
uncertain than condition A
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The expression of the assumptions of a Bayesian model
can occur at multiple levels, corresponding to the steps of
specification of the joint probability distribution. The first
level is the choice of the variables and their domain. Variables
ruled out at this step cannot have any influence in the model.
One step further, the joint probability distribution over the
chosen variables is decomposed into a product of factors by
the way of conditional independencies. These express a lack
of relationship between variables and therefore reduce the
complexity of the inference. The final level of expression of
assumptions is in the choice of each distribution involved in
the decomposition, along with their eventual parameters.

Each choice is a reduction in the degrees of freedom of
the joint distribution. The more drastic restrictions are in the
choice of the variables and their domain while the less impor-
tant are in the choice of the parameters of the distribution.
Any reduction can be postponed to a later stage but the earlier
it is done, the more the inference can take advantage of it to
simplify the computations.

4.2 Choices in our Bayesian model

Designing a Bayesian model is therefore choosing the level
of specification to express each of the assumptions.

The first main hypothesis is that of rigidity, which states
that the optic flow more likely to be observed is generated
by a plane in relative motion. The parametric space of the
optic flow is derived from this hypothesis. The optic flow
is defined by eight parameters. While sufficient in the case
of a plane, the optic flow is, in general, more complicated.
This means that other eventual components are not rele-
vant variables in our model, and are therefore ignored. It
could be interesting to investigate an eventual effect of these
components in the human perception of a plane. As far as
the model is concerned, such investigation can be studied
with additional components in the optic flow variable. Rigid-
ity is also involved in the decomposition with the indepen-
dency between optic flow and self-motion conditionally to
the knowledge of the structure of the object and the rela-
tive motion of the object. Finally, rigidity is preeminent in
the choice of the parametric form of the probability distrib-
ution over optic flow, given relative motion, position of the
plane, and the conditions of observation. We fixed this as
a Gaussian distribution. However, it would be possible to
evaluate this choice of distribution by measuring evolution
of performance with respect to some additional noise in the
stimulus and comparing it to the predicted evolution of the
model.
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The other main hypothesis of our model is that of
stationarity, which states that the motion of the plane is more
likely to be small. The variables chosen to describe the optic
flow are restricted to instantaneous measurements of dis-
placement of the dots and those for the motion of the object
are the translation and rotation components along the three
axes, according to the experiments chosen as references. This
is restrictive in the sense that it does not take into account
eventual accelerations and even more complex trajectory.
Most reported studies deal with uniform motion; however,
investigation of the influence of accelerations in the percep-
tion of structure could benefit from the model. The model can
be adapted to handle series of observations and more com-
plex motion, allowing to looking into the results of different
hypotheses that can be compared to experimental results.

The parameters are the last elements of choice in the
model. We obtained the results presented above with a single
set of parameters. Each experimental result gives informa-
tion on the exact effect highlighted by the experiment on
some parameters. However, the optimal parameters for each
experiment are different; therefore, the final set of parameters
chosen results from a trade-off between all the experiments.

4.3 Model results

The results of the model display some discrepancies with
the results of the experiments. For example, for the first
experiment described, the reversal rate of the model in a
small field is 44.6% compared with 48.8% in the exper-
iment (Cornilleau-Pérès et al. 2002). There are two main
reasons for this difference. First, the Bayesian model is a
model of an observer. It is not specifically designed to repro-
duce mean results across observers. Nevertheless, the results
of our model are less than the variability reported between
observers (in this case, the minimum reversal rate reported by
Cornilleau-Pérès et al. 2002 is around 38%). As explained
above, the set of parameters is the same across all the results
of our model. However, there are variations in the precise
experimental conditions between the different teams respon-
sible for the measured results. For instance, the rate of rever-
sal measured in a small field of view for an immobile observer
by van Boxtel et al. (2003) is 35%, compared with 48.8%
measured by Cornilleau-Pérès et al. (2002). This can be
explained by differences in the protocol that are not taken
into account as relevant variables in the Bayesian model.
Therefore, as a general rule, the parameters we chose for the
Bayesian model are a trade-off between all the results. This
way, the results of the model cannot precisely match those
of the experimental results.

The Bayesian model not only accounts for previously
reported results but can also be used to make predictions and
eventually propose new experiments. For example, we pro-
pose the investigation of the relative influence of stationarity

and rigidity in large fields of view. In this case, in an exper-
imental setup similar to that of Wexler (2003), our model
predicts that rigidity will be of greater importance in the per-
ception of second-order optic flow through a diminution of
standard deviation on these components.

Another prediction of the Bayesian model involves the
shear effect. In our model, this effect is accounted for by
relative weight between rotation and translation components
in a small field of view. Our model predicts a reduced shear
effect in large fields of view, and this has been found in human
observers (Cornilleau-Pérès et al. 2002).

4.4 Conclusion

In this article, we have presented a generic Bayesian model to
integrate both stationarity and rigidity hypotheses for the per-
ception of 3-D surfaces from optic flow. We have detailed the
instantiation of such a model to tackle the exemplary case of
the perception of the perception of a plane. We presented the
results of our model compared with six experimental results
from the literature.

The rigidity and stationarity hypotheses are implemented
by conditional independencies and probability distributions.
In this way, the resulting model could account for many
aspects of the perception of an planar object from optic flow.
In a more general manner, we think that Bayesian modelling
can prove useful to handle the inherent uncertainties of per-
ception.
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A Optic flow equations

Let P be the object plane, θ = (χ ,υ) its depth gradients,
Ã with coordinates (x̃, ỹ, z̃) a point of this plane in the 3-D
reference frame, and A with coordinates (x, y) its projection
in the image plane. The equation of the plane is

x̃χ + ỹυ − z̃ = 0. (9)

We have the slant of the plane σ = arctan
√

χ2 + υ2 and the
tilt τ = arctan υ

χ .
Let Π be the projection of a 3-D point in the image:

Π :

⎛

⎝
x̃
ỹ
z̃

⎞

⎠ (→
(

x = x̃
1−z̃

y = ỹ
1−z̃

)

. (10)

Let t = (tx , ty, tz) and ω = (ωx ,ωy,ωz) respectively be
the relative translation and rotation vector of the object plane.
We have X = (t,ω).
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Considering the points as functions of time, we can write

A(t) = Π ◦ Ã(t). (11)

Optic flow is the displacement of the points in the image:

φ = dA
dt

(12)

φ = dΠ

d Ã
( Ã) × d Ã

dt
. (13)

dΠ
d Ã

is the Jacobian of Π :

dΠ

d Ã
( Ã) =

⎛

⎜⎝

∂x
∂ x̃

∂x
∂ ỹ

∂x
∂ z̃

∂y
∂ x̃

∂y
∂ ỹ

∂y
∂ z̃

⎞

⎟⎠

dΠ

d Ã
( Ã) =

( 1
1−z̃ 0 x̃

(1−z̃)2

0 1
1−z̃

ỹ
(1−z̃)2

)

(14)

The plane P undergoes translation t and rotation ω. There-
fore the motion d Ã

dt of Ã is

d Ã
dt

= t + ω ∧ Ã

=

⎛

⎝
tx
ty
tz

⎞

⎠ +

⎛

⎝
ωx
ωy
ωz

⎞

⎠ ∧

⎛

⎝
x̃
ỹ

χ x̃ + υ ỹ

⎞

⎠

d Ã
dt

=

⎛

⎝
tx + χωy x̃ + (υωy − ωz)ỹ
ty + (ωz − χωx )x̃ − υωx ỹ

tz + ωx ỹ − ωy x̃

⎞

⎠ (15)

Substituting 14 and 15 in Eq. 13, we get

φ = dΠ

d Ã
( Ã) × d Ã

dt

=
( 1

1−z̃ 0 x̃
(1−z̃)2

0 1
1−z̃

ỹ
(1−z̃)2

)

×

⎛

⎜⎝
tx + χωy x̃ + (υωy − ωz)ỹ

ty + (ωz − χωx )x̃ − υωx ỹ

tz + ωx ỹ − ωy x̃

⎞

⎟⎠

φ =

⎛

⎝
tx +χωy x̃+(υωy−ωz)ỹ

1−z̃ + x̃
1−z̃ × tz+ωx ỹ−ωy x̃

1−z̃
ty+(ωz−χωx )x̃−υωx ỹ

1−z̃ + ỹ
1−z̃ × tz+ωx ỹ−ωy x̃

1−z̃

⎞

⎠ (16)

By definition of Π (Eq. 10), x̃
1−z̃ = x , ỹ

1−z̃ = y and
1

1−z̃ = 1 +χx +υy. We can finally rewrite the Eq. 16 to get
the Eqs. 17 of the optic flow of a plane:

φ =

⎛

⎝
tx +χωy x̃+(υωy−ωz)ỹ

1−z̃ + x̃
1−z̃ × tz+ωx ỹ−ωy x̃

1−z̃
ty+(ωz−χωx )x̃−υωx ỹ

1−z̃ + ỹ
1−z̃ × tz+ωx ỹ−ωy x̃

1−z̃

⎞

⎠

φ =

⎛

⎜⎜⎜⎝

tx + x
[
tz + χ

(
tx + ωy

)]
+ y

[
−ωz + υ

(
tx + ωy

)]

+x2 (
χ tz − ωy

)
+ xy (υtz + ωx )

ty + x
[
ωz + χ

(
ty − ωx

)]
+ y

[
tz + υ

(
ty − ωx

)]

+xy
(
χ tz − ωy

)
+ y2 (υtz + ωx )

⎞

⎟⎟⎟⎠

φ = φ0 + φ1.t (x, y) +t (x, y).tφ2.t (x, y) (17)

with

φ0 =
(

tx
ty

)

φ1 =
(

tz + χ
(
tx + ωy

)
−ωz + υ

(
tx + ωy

)

ωz + χ
(
ty − ωx

)
tz + υ

(
ty − ωx

)
)

φ2 =
(

χ tz − ωy
υtz + ωx

)
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